Last active
February 21, 2018 17:32
-
-
Save Foadsf/0743534b0d766cabcd3eab49a79a1b8b to your computer and use it in GitHub Desktop.
Solving Navier-Stokes equations for a steady-state compressible viscous flow in a 2D axisymmetric step
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
lc = 0.03; | |
rc = 0.01; | |
xp = 0.01; | |
c = 0.005; | |
rp = rc - c; | |
lp = lc - xp; | |
T0 = 300; | |
eta0 = 1.846*10^-5; | |
P1 = 6*10^5 ; | |
P0 = 10^5; | |
cP = 1004.9; | |
cnu = 717.8; | |
R0 = cP - cnu; | |
Omega = RegionDifference[Rectangle[{0, 0}, {lc, rc}], | |
Rectangle[{xp, 0}, {xp + lp, rp}]]; | |
Needs["NDSolve`FEM`"]; | |
mesh = ToElementMesh[Omega, "MaxBoundaryCellMeasure" -> 0.00001, | |
MaxCellMeasure -> {"Length" -> 0.0008}, | |
"MeshElementConstraint" -> 20, MeshQualityGoal -> "Maximal"]; | |
eqn1 = D[rho[x, r]*nux[x, r], x] + D[r*rho[x, r]*nur[x, r], r]/r == 0; | |
eqn2 = D[rho[x, r]*nux[x, r]^2 + R0*rho[x, r]*T[x, r], x] + | |
D[r*(rho[x, r]*nux[x, r]*nur[x, r] + eta0*D[nux[x, r], r]), r]/ | |
r == 0; | |
eqn3 = D[rho[x, r]*nux[x, r]*nur[x, r] + eta0*D[nur[x, r], x], x] + | |
D[r*(rho[x, r]*nur[x, r]^2 + R0*rho[x, r]*T[x, r]), r]/r == 0; | |
eqn4 = cnu* | |
rho[x, r]*(nux[x, r]*D[T[x, r], x] + nur[x, r]*D[T[x, r], r]) + | |
R0*rho[x, r]* | |
T[x, r]*(D[nux[x, r], x] + | |
D[r*nur[x, r], x]/r) + (2*D[nux[x, r], x]^2 + | |
2*D[nur[x, r], r]^2 + (D[nux[x, r], r] + | |
D[nur[x, r], | |
x])^2 - ((D[nux[x, r], x] + D[r*nur[x, r], x]/r)^2)*2/3)* | |
eta0 == 0; | |
eqns = {eqn1, eqn2, eqn3, eqn4}; | |
bc1 = R0* rho[0, r]*T0 == P1; | |
bc2 = R0 *rho[lc, r]*T0 == P0; | |
bc3 = DirichletCondition[{nur[x, 0] == 0, D[nur[x, r], r] == 0, | |
D[nux[x, r], r] == 0, D[rho[x, r], r] == 0, D[T[x, r], r] == 0}, | |
r == 0 && (0 <= x <= xp)]; | |
bc4 = DirichletCondition[{nur[x, r] == 0, | |
nux[x, r] == | |
0}, (0 <= r <= rp && x == xp) || (r == rp && | |
xp <= x <= xp + lp) || (r == rc && 0 <= x <= lc)]; | |
bcs = {bc1, bc2, bc3, bc4}; | |
{nuxsol, nursol, rhosol, Tsol} = | |
NDSolveValue[{eqns, bcs}, {nux, nur, rho, T}, {x, r} \[Element] mesh, | |
Method -> {"FiniteElement", | |
"InterpolationOrder" -> {nux -> 2, nur -> 2, rho -> 1, T -> 1}, | |
"IntegrationOrder" -> 5}] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment