Created
May 6, 2024 19:07
-
-
Save Foadsf/93b91180adcfae2aeb0663e6b1782993 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pylatexenc.latex2text import LatexNodes2Text | |
from nltk.probability import FreqDist | |
from nltk.corpus import stopwords | |
import argparse | |
import nltk | |
def analyze_word_frequency(filename, words_to_check): | |
"""Analyzes word frequency in a LaTeX document. | |
Args: | |
filename (str): Path to the LaTeX file. | |
words_to_check (list): List of words to check frequency for. | |
Returns: | |
dict: A dictionary containing the frequency of the words_to_check. | |
""" | |
with open(filename, "r", encoding="utf-8") as f: | |
latex_code = f.read() | |
# Convert LaTeX to plain text | |
converter = LatexNodes2Text() | |
plain_text = converter.latex_to_text(latex_code) | |
# Tokenize and lowercase the text | |
tokens = nltk.word_tokenize(plain_text.lower()) | |
# Remove stopwords | |
stop_words = set(stopwords.words("english")) | |
filtered_tokens = [w for w in tokens if w not in stop_words and w.isalnum()] | |
# Calculate word frequencies | |
word_dist = FreqDist(filtered_tokens) | |
# Extract frequencies for words_to_check | |
word_counts = {word: word_dist[word] for word in words_to_check} | |
return word_counts | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser( | |
description="Analyze word frequency in LaTeX documents." | |
) | |
parser.add_argument("filename", help="Path to the LaTeX file.") | |
parser.add_argument( | |
"-w", "--words", nargs="+", help="Words to check frequency for." | |
) | |
args = parser.parse_args() | |
word_counts = analyze_word_frequency(args.filename, args.words) | |
print(word_counts) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment