Interesting Course :
Best introduction I'd see so far :
Introduction to Topological Data Analysis
Paper on a very good dimension reduction algorithm :
from torch_geometric.nn.conv import MessagePassing | |
class MPGNNConv(MessagePassing): | |
def __init__(self, node_dim, edge_dim, layers=3): | |
super().__init__(aggr='mean', node_dim=0) | |
self.lin_edge = MLP(in_dim=node_dim * 2 + edge_dim, out_dim=node_dim, hidden_layers=layers) | |
self.lin_node = MLP(in_dim=node_dim * 2, out_dim=node_dim, hidden_layers=layers) | |
def forward(self, x, edge_index, edge_attr): | |
""" |
Interesting Course :
Best introduction I'd see so far :
Introduction to Topological Data Analysis
Paper on a very good dimension reduction algorithm :
Portail cours X : http://www.enseignement.polytechnique.fr/informatique/INF556/
Computational Topopology All : https://www2.cs.duke.edu/courses/fall06/cps296.1/
github recap : https://gist.github.com/calstad/01e174faff2cdca7faf9