Created
September 18, 2019 20:58
-
-
Save Forty-Bot/751d208d4f3d5cb64ef26f446f6cd54c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| {-# OPTIONS --without-K --exact-split --safe #-} | |
| Rel : Set -> Set1 | |
| Rel A = A -> A -> Set | |
| -- Some properties | |
| record Reflexive {A : Set} (R : Rel A) : Set where | |
| field refl : (a : A) -> (R a a) | |
| record Symmetric {A : Set} (R : Rel A) : Set where | |
| field sym : (a b : A) -> (R a b) -> (R b a) | |
| record Transitive {A : Set} (R : Rel A) : Set where | |
| field trans : (a b c : A) -> (R a b) -> (R b c) -> (R a c) | |
| record Equivalent {A : Set} (R : Rel A) : Set where | |
| field | |
| {{refl}} : Reflexive {A} R | |
| {{sym}} : Symmetric {A} R | |
| {{trans}} : Transitive {A} R | |
| open Equivalent {{...}} | |
| data I {A : Set} : Rel A where | |
| I-refl : (a : A) -> I a a | |
| _==_ : {A : Set} -> A -> A -> Set | |
| x == y = I x y | |
| J : {A : Set} -> {a b : A} -> (C : (a b : A) -> I a b -> Set) -> (c : I a b) -> C a a (I-refl a) -> C a b c | |
| J _ (I-refl a) d = d | |
| I-reflexivity : {A : Set} -> Reflexive {A} I | |
| I-reflexivity = record {refl = I-refl} | |
| I-sym : {A : Set} -> (a b : A) -> (a == b) -> (b == a) | |
| I-sym a b p = J C p (I-refl a) | |
| where C = \a b r -> I b a | |
| I-symmetry : {A : Set} -> Symmetric {A} I | |
| I-symmetry = record {sym = I-sym} | |
| I-trans : {A : Set} -> (a b c : A) -> (I a b) -> (I b c) -> (I a c) | |
| I-trans a b c p q = J C q p | |
| where C = \b c r -> I a c | |
| I-transitivity : {A : Set} -> Transitive {A} I | |
| I-transitivity = record {trans = I-trans} | |
| instance | |
| I-equivalence : {A : Set} -> Equivalent {A} I | |
| refl {{I-equivalence}} = I-refl | |
| sym {{I-equivalence}} = I-sym | |
| trans {{I-equivalence}} = I-trans |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment