Skip to content

Instantly share code, notes, and snippets.

@FreeFly19
Created April 20, 2019 01:34
Show Gist options
  • Save FreeFly19/07a8472678727c448fe56cf9634e3c31 to your computer and use it in GitHub Desktop.
Save FreeFly19/07a8472678727c448fe56cf9634e3c31 to your computer and use it in GitHub Desktop.
"""
Usage:
# From tensorflow/models/
# Create train data:
python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record
# Create test data:
python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
import os
import io
import pandas as pd
import tensorflow as tf
from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict
flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
flags.DEFINE_string('image_dir', '', 'Path to images')
FLAGS = flags.FLAGS
# TO-DO replace this with label map
def class_text_to_int(row_label):
classes = {
'D00': 1,
'D01': 2,
'D10': 3,
'D11': 4,
'D20': 5,
'D30': 6,
'D40': 7,
'D43': 8,
'D44': 9
}
return classes[row_label]
def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]
def create_tf_example(group, path):
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size
filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = []
for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class']))
tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example
def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(FLAGS.image_dir)
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString())
writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path))
if __name__ == '__main__':
tf.app.run()
export PYTHONPATH=$PYTHONPATH:/home/freefly19/projects/tf-models/research:/home/freefly19/projects/tf-models/research/slim:/home/freefly19/projects/tf-models/research/object_detection:/home/freefly19/projects/tf-models/research/object_detection/utils
python split.py
python xml_to_csv.py
cd train
python ../generate_tfrecord.py --csv_input=../data/train_labels.csv --output_path=../data/train.record
cd ../test
python ../generate_tfrecord.py --csv_input=../data/test_labels.csv --output_path=../data/test.record
cd ..
python /home/freefly19/projects/tf-models/research/object_detection/model_main.py --logtostderr --pipeline_config_path=training/ssd_mobilenet_v1_coco.config --model_dir=training
tensorboard --logdir=training-ssd-mobilenet_300_300
python export_inference_graph.py \
--input_type image_tensor \
--pipeline_config_path training-3/faster_rcnn_inception_resnet_v2_atrous_coco.config \
--trained_checkpoint_prefix training-3/model.ckpt-200000 \
--output_directory training-3-3output
sensors
nvidia-smi --query-gpu=temperature.gpu --format=csv,noheader
-----
import os
from random import shuffle
from math import floor
import shutil
def get_training_and_testing_sets(file_list):
split = 0.7
split_index = int(floor(len(file_list) * split))
training = file_list[:split_index]
testing = file_list[split_index:]
return training, testing
def get_file_list_from_dir(datadir):
all_files = os.listdir(os.path.abspath(datadir))
data_files = list(map(lambda file: file.replace('.jpg', ''), filter(lambda file: file.endswith('.jpg'), all_files)))
return data_files
regions = ['Chiba', 'Sumida', 'Adachi', 'Ichihara', 'Nagakute', 'Muroran', 'Numazu']
for r in regions:
file_names = get_file_list_from_dir(r + '/JPEGImages')
shuffle(file_names)
training, test = get_training_and_testing_sets(file_names)
if not os.path.exists('train'):
os.makedirs('train')
if not os.path.exists('test'):
os.makedirs('test')
for name in training:
if os.path.exists(r + '/Annotations/' + name + '.xml'):
shutil.copy(r + '/JPEGImages/' + name + '.jpg', 'train/' + name + '.jpg')
shutil.copy(r + '/Annotations/' + name + '.xml', 'train/' + name + '.xml')
for name in test:
if os.path.exists(r + '/Annotations/' + name + '.xml'):
shutil.copy(r + '/JPEGImages/' + name + '.jpg', 'test/' + name + '.jpg')
shutil.copy(r + '/Annotations/' + name + '.xml', 'test/' + name + '.xml')
import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET
def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(float(root.find('size')[0].text)),
int(float(root.find('size')[1].text)),
member.find('name').text,
int(float(member.find('bndbox').find('xmin').text)),
int(float(member.find('bndbox').find('ymin').text)),
int(float(member.find('bndbox').find('xmax').text)),
int(float(member.find('bndbox').find('ymax').text))
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df
def main():
if not os.path.exists('data'):
os.makedirs('data')
for p in ['test', 'train']:
image_path = os.path.join(os.getcwd(), p)
xml_df = xml_to_csv(image_path)
xml_df.to_csv('data/{}_labels.csv'.format(p), index=None)
print('Successfully converted xml to csv.')
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment