Created
July 27, 2023 16:13
-
-
Save FreeFly19/9554211dd7bfe74ea6a3ee900f42ad13 to your computer and use it in GitHub Desktop.
MNIST PyTorch CNN with skip connections
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch | |
import torchvision | |
from torch.utils.data import DataLoader | |
from torchvision.transforms import ToTensor | |
train_dataset = torchvision.datasets.MNIST('data', train=True, transform=ToTensor(), download=True) | |
test_dataset = torchvision.datasets.MNIST('data', train=False, transform=ToTensor(), download=True) | |
batch_size = 16 | |
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=8) | |
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True, num_workers=8) | |
class Model(torch.nn.Module): | |
def __init__(self, base_filter_size=16): | |
super().__init__() | |
self.conv1 = torch.nn.Conv2d(1, base_filter_size, kernel_size=(3, 3), padding=1) | |
self.conv2_1 = torch.nn.Conv2d(base_filter_size, base_filter_size, kernel_size=(3, 3), padding=1) | |
self.conv2_2 = torch.nn.Conv2d(base_filter_size, base_filter_size, kernel_size=(3, 3), padding=1) | |
self.conv3 = torch.nn.Conv2d(base_filter_size, base_filter_size * 2, kernel_size=(3, 3), padding=1) | |
self.act = torch.nn.ReLU() | |
self.max_pooling = torch.nn.MaxPool2d(kernel_size=2, stride=2) | |
self.fc = torch.nn.Linear(base_filter_size * 2 * 3 * 3, 10) | |
def forward(self, X): | |
X = self.conv1(X) | |
X = self.act(X) | |
X = self.max_pooling(X) | |
# [batch, base_filter_size, 14, 14] | |
X = self.conv2_1(X) + X | |
X = self.act(X) | |
X = self.conv2_2(X) + X | |
X = self.act(X) | |
X = self.max_pooling(X) | |
# [batch, base_filter_size, 7, 7] | |
X = self.conv3(X) | |
X = self.act(X) | |
X = self.max_pooling(X) | |
# [batch, base_filter_size*2, 3, 3] | |
X = torch.flatten(X, start_dim=1) | |
# [batch, base_filter_size*2*3*3] | |
X = self.fc(X) | |
# [batch, 10] | |
return X | |
model = Model().cuda() | |
critic = torch.nn.CrossEntropyLoss() | |
optim = torch.optim.SGD(model.parameters(), lr=0.01) | |
for epoch in range(10): | |
for mode in ['train', 'val']: | |
losses = [] | |
accuracies = [] | |
dataloader = train_dataloader if mode == 'train' else test_dataloader | |
for X, y in dataloader: | |
X = X.cuda() | |
y = y.cuda() | |
optim.zero_grad() | |
y_pred = model(X) | |
accuracy = (torch.argmax(y_pred, dim=1) == y).float().mean() | |
accuracies.append(accuracy.item()) | |
y_ohe = torch.zeros_like(y_pred) | |
for i in range(y.shape[0]): | |
y_ohe[i][y[i]] = 1 | |
loss = critic(y_pred, y_ohe) | |
losses.append(loss.item()) | |
if mode == 'train': | |
loss.backward() | |
optim.step() | |
print(f'Mode: {mode}, Epoch: {epoch}, Loss: {np.mean(losses):.3f}, Accuracy: {np.mean(accuracies):.3f}') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment