Skip to content

Instantly share code, notes, and snippets.

@GLitchfield
Created December 9, 2013 13:29
Show Gist options
  • Save GLitchfield/7872245 to your computer and use it in GitHub Desktop.
Save GLitchfield/7872245 to your computer and use it in GitHub Desktop.
public class DoubleUtil
{
//Hardcode some byte arrays to make them quickly available
public static final char NO_THOUSANDS_SEPARATOR = '@';
public static final char[] INFINITY = {'I','n','f','i','n','i','t','y'};
public static final char[] NaN = {'N','a','N'};
public static final char[][] ZEROS = {
{},
{'0'},
{'0','0'},
{'0','0','0'},
{'0','0','0','0'},
{'0','0','0','0','0'},
{'0','0','0','0','0','0'},
{'0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0'},
{'0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0','0'},
};
private static final char[] charForDigit = {
'0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f','g','h',
'i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'
};
//And required double related constants.
private static final long DoubleSignMask = 0x8000000000000000L;
private static final long DoubleExpMask = 0x7ff0000000000000L;
//private static final long DoubleFractMask= ~(DoubleSignMask|DoubleExpMask);
private static final int DoubleExpShift = 52;
private static final int DoubleExpBias = 1023;
private static final double[] d_tenthPowers = {
1e-323D, 1e-322D, 1e-321D, 1e-320D, 1e-319D, 1e-318D, 1e-317D, 1e-316D, 1e-315D, 1e-314D,
1e-313D, 1e-312D, 1e-311D, 1e-310D, 1e-309D, 1e-308D, 1e-307D, 1e-306D, 1e-305D, 1e-304D,
1e-303D, 1e-302D, 1e-301D, 1e-300D, 1e-299D, 1e-298D, 1e-297D, 1e-296D, 1e-295D, 1e-294D,
1e-293D, 1e-292D, 1e-291D, 1e-290D, 1e-289D, 1e-288D, 1e-287D, 1e-286D, 1e-285D, 1e-284D,
1e-283D, 1e-282D, 1e-281D, 1e-280D, 1e-279D, 1e-278D, 1e-277D, 1e-276D, 1e-275D, 1e-274D,
1e-273D, 1e-272D, 1e-271D, 1e-270D, 1e-269D, 1e-268D, 1e-267D, 1e-266D, 1e-265D, 1e-264D,
1e-263D, 1e-262D, 1e-261D, 1e-260D, 1e-259D, 1e-258D, 1e-257D, 1e-256D, 1e-255D, 1e-254D,
1e-253D, 1e-252D, 1e-251D, 1e-250D, 1e-249D, 1e-248D, 1e-247D, 1e-246D, 1e-245D, 1e-244D,
1e-243D, 1e-242D, 1e-241D, 1e-240D, 1e-239D, 1e-238D, 1e-237D, 1e-236D, 1e-235D, 1e-234D,
1e-233D, 1e-232D, 1e-231D, 1e-230D, 1e-229D, 1e-228D, 1e-227D, 1e-226D, 1e-225D, 1e-224D,
1e-223D, 1e-222D, 1e-221D, 1e-220D, 1e-219D, 1e-218D, 1e-217D, 1e-216D, 1e-215D, 1e-214D,
1e-213D, 1e-212D, 1e-211D, 1e-210D, 1e-209D, 1e-208D, 1e-207D, 1e-206D, 1e-205D, 1e-204D,
1e-203D, 1e-202D, 1e-201D, 1e-200D, 1e-199D, 1e-198D, 1e-197D, 1e-196D, 1e-195D, 1e-194D,
1e-193D, 1e-192D, 1e-191D, 1e-190D, 1e-189D, 1e-188D, 1e-187D, 1e-186D, 1e-185D, 1e-184D,
1e-183D, 1e-182D, 1e-181D, 1e-180D, 1e-179D, 1e-178D, 1e-177D, 1e-176D, 1e-175D, 1e-174D,
1e-173D, 1e-172D, 1e-171D, 1e-170D, 1e-169D, 1e-168D, 1e-167D, 1e-166D, 1e-165D, 1e-164D,
1e-163D, 1e-162D, 1e-161D, 1e-160D, 1e-159D, 1e-158D, 1e-157D, 1e-156D, 1e-155D, 1e-154D,
1e-153D, 1e-152D, 1e-151D, 1e-150D, 1e-149D, 1e-148D, 1e-147D, 1e-146D, 1e-145D, 1e-144D,
1e-143D, 1e-142D, 1e-141D, 1e-140D, 1e-139D, 1e-138D, 1e-137D, 1e-136D, 1e-135D, 1e-134D,
1e-133D, 1e-132D, 1e-131D, 1e-130D, 1e-129D, 1e-128D, 1e-127D, 1e-126D, 1e-125D, 1e-124D,
1e-123D, 1e-122D, 1e-121D, 1e-120D, 1e-119D, 1e-118D, 1e-117D, 1e-116D, 1e-115D, 1e-114D,
1e-113D, 1e-112D, 1e-111D, 1e-110D, 1e-109D, 1e-108D, 1e-107D, 1e-106D, 1e-105D, 1e-104D,
1e-103D, 1e-102D, 1e-101D, 1e-100D, 1e-99D, 1e-98D, 1e-97D, 1e-96D, 1e-95D, 1e-94D,
1e-93D, 1e-92D, 1e-91D, 1e-90D, 1e-89D, 1e-88D, 1e-87D, 1e-86D, 1e-85D, 1e-84D,
1e-83D, 1e-82D, 1e-81D, 1e-80D, 1e-79D, 1e-78D, 1e-77D, 1e-76D, 1e-75D, 1e-74D,
1e-73D, 1e-72D, 1e-71D, 1e-70D, 1e-69D, 1e-68D, 1e-67D, 1e-66D, 1e-65D, 1e-64D,
1e-63D, 1e-62D, 1e-61D, 1e-60D, 1e-59D, 1e-58D, 1e-57D, 1e-56D, 1e-55D, 1e-54D,
1e-53D, 1e-52D, 1e-51D, 1e-50D, 1e-49D, 1e-48D, 1e-47D, 1e-46D, 1e-45D, 1e-44D,
1e-43D, 1e-42D, 1e-41D, 1e-40D, 1e-39D, 1e-38D, 1e-37D, 1e-36D, 1e-35D, 1e-34D,
1e-33D, 1e-32D, 1e-31D, 1e-30D, 1e-29D, 1e-28D, 1e-27D, 1e-26D, 1e-25D, 1e-24D,
1e-23D, 1e-22D, 1e-21D, 1e-20D, 1e-19D, 1e-18D, 1e-17D, 1e-16D, 1e-15D, 1e-14D,
1e-13D, 1e-12D, 1e-11D, 1e-10D, 1e-9D, 1e-8D, 1e-7D, 1e-6D, 1e-5D, 1e-4D,
1e-3D, 1e-2D, 1e-1D, 1e0D, 1e1D, 1e2D, 1e3D, 1e4D,
1e5D, 1e6D, 1e7D, 1e8D, 1e9D, 1e10D, 1e11D, 1e12D, 1e13D, 1e14D,
1e15D, 1e16D, 1e17D, 1e18D, 1e19D, 1e20D, 1e21D, 1e22D, 1e23D, 1e24D,
1e25D, 1e26D, 1e27D, 1e28D, 1e29D, 1e30D, 1e31D, 1e32D, 1e33D, 1e34D,
1e35D, 1e36D, 1e37D, 1e38D, 1e39D, 1e40D, 1e41D, 1e42D, 1e43D, 1e44D,
1e45D, 1e46D, 1e47D, 1e48D, 1e49D, 1e50D, 1e51D, 1e52D, 1e53D, 1e54D,
1e55D, 1e56D, 1e57D, 1e58D, 1e59D, 1e60D, 1e61D, 1e62D, 1e63D, 1e64D,
1e65D, 1e66D, 1e67D, 1e68D, 1e69D, 1e70D, 1e71D, 1e72D, 1e73D, 1e74D,
1e75D, 1e76D, 1e77D, 1e78D, 1e79D, 1e80D, 1e81D, 1e82D, 1e83D, 1e84D,
1e85D, 1e86D, 1e87D, 1e88D, 1e89D, 1e90D, 1e91D, 1e92D, 1e93D, 1e94D,
1e95D, 1e96D, 1e97D, 1e98D, 1e99D, 1e100D, 1e101D, 1e102D, 1e103D, 1e104D,
1e105D, 1e106D, 1e107D, 1e108D, 1e109D, 1e110D, 1e111D, 1e112D, 1e113D, 1e114D,
1e115D, 1e116D, 1e117D, 1e118D, 1e119D, 1e120D, 1e121D, 1e122D, 1e123D, 1e124D,
1e125D, 1e126D, 1e127D, 1e128D, 1e129D, 1e130D, 1e131D, 1e132D, 1e133D, 1e134D,
1e135D, 1e136D, 1e137D, 1e138D, 1e139D, 1e140D, 1e141D, 1e142D, 1e143D, 1e144D,
1e145D, 1e146D, 1e147D, 1e148D, 1e149D, 1e150D, 1e151D, 1e152D, 1e153D, 1e154D,
1e155D, 1e156D, 1e157D, 1e158D, 1e159D, 1e160D, 1e161D, 1e162D, 1e163D, 1e164D,
1e165D, 1e166D, 1e167D, 1e168D, 1e169D, 1e170D, 1e171D, 1e172D, 1e173D, 1e174D,
1e175D, 1e176D, 1e177D, 1e178D, 1e179D, 1e180D, 1e181D, 1e182D, 1e183D, 1e184D,
1e185D, 1e186D, 1e187D, 1e188D, 1e189D, 1e190D, 1e191D, 1e192D, 1e193D, 1e194D,
1e195D, 1e196D, 1e197D, 1e198D, 1e199D, 1e200D, 1e201D, 1e202D, 1e203D, 1e204D,
1e205D, 1e206D, 1e207D, 1e208D, 1e209D, 1e210D, 1e211D, 1e212D, 1e213D, 1e214D,
1e215D, 1e216D, 1e217D, 1e218D, 1e219D, 1e220D, 1e221D, 1e222D, 1e223D, 1e224D,
1e225D, 1e226D, 1e227D, 1e228D, 1e229D, 1e230D, 1e231D, 1e232D, 1e233D, 1e234D,
1e235D, 1e236D, 1e237D, 1e238D, 1e239D, 1e240D, 1e241D, 1e242D, 1e243D, 1e244D,
1e245D, 1e246D, 1e247D, 1e248D, 1e249D, 1e250D, 1e251D, 1e252D, 1e253D, 1e254D,
1e255D, 1e256D, 1e257D, 1e258D, 1e259D, 1e260D, 1e261D, 1e262D, 1e263D, 1e264D,
1e265D, 1e266D, 1e267D, 1e268D, 1e269D, 1e270D, 1e271D, 1e272D, 1e273D, 1e274D,
1e275D, 1e276D, 1e277D, 1e278D, 1e279D, 1e280D, 1e281D, 1e282D, 1e283D, 1e284D,
1e285D, 1e286D, 1e287D, 1e288D, 1e289D, 1e290D, 1e291D, 1e292D, 1e293D, 1e294D,
1e295D, 1e296D, 1e297D, 1e298D, 1e299D, 1e300D, 1e301D, 1e302D, 1e303D, 1e304D,
1e305D, 1e306D, 1e307D, 1e308D
};
/**
* Assumes the arg is a positive number. Returns a zero padded long
* whose most significant digits start with the first non-zero number
* in the double specified.
*
* @param d
* @return
*/
public static long asLong(double d)
{
int numFractDigits = 4;
long l;
//Now scale the double to the biggest long value we need
//We need to handle the smallest magnitudes differently because of rounding errors
//Find the magnitude. This is basically the exponent in normal form.
int magnitude = magnitude(d);
//This test is unlikely to ever be true. It would require numFractDigits
//to be 305 or more, which is pretty unlikely.
if (magnitude < -305)
l = (long) ((d*1E18) / d_tenthPowers[magnitude + 324]);
else
l = (long) (d / d_tenthPowers[magnitude + 323 - 17]);
//And round up if necessary. Add one to the numFractDigits digit if the
//numFractDigits+1 digit is 5 or greater. It is useful to know that
//given a long, l, the nth digit is obtained using the formula
// nthDigit = (l/(tenthPower(l)/l_tenthPowers[n-1]))%10;
long l_tenthPower = tenthPower(l);
//The numFractDigits+1 digit of the double is the
//numFractDigits+1+magnitude digit of the long.
//We only need worry about digits within the long. Very large numbers are
//not rounded because all the digits after the decimal points are 0 anyway
if (numFractDigits+magnitude+1 < l_tenthPowers.length)
{
long digit = (l/(l_tenthPower/l_tenthPowers[numFractDigits+magnitude+1]))%10;
if (digit >= 5)
{
l += l_tenthPower/l_tenthPowers[numFractDigits+magnitude];
}
}
return l;
}
/**
* Fast formats the specified double by calling:
* public void appendFormatted(StringBuffer s, double d, int numFractDigits,
* char decimalPoint, char thousandsSeparator, int numDigitsSeparated,
* char negativePrefix, char negativeSuffix) with default values of:
*
* 1. decimalPoint = '.'
* 2. thousandsSeperator = ','
* 3. numDigitsSeparated = '3'
* 4. negativePrefix = '-'
* 5. negativeSuffix = '\uffff'
*
* @param s Empty StringBuffer which will be filled with the formatted double.
* @param d The double to be formatted.
* @param numFractDigits The number of digits appearing after the decimal point.
*/
public void appendFormatted(StringBuffer s, double d, int numFractDigits)
{
appendFormatted(s, d, numFractDigits,
'.', DoubleUtil.NO_THOUSANDS_SEPARATOR, 3, '-', '\uffff');
}
public void appendFormatted(StringBuffer s, double d, int numFractDigits,
char decimalPoint, char thousandsSeparator, int numDigitsSeparated,
char negativePrefix, char negativeSuffix)
{
//First check for the special cases, +/-infinity, Not-a-number and -0.0
if (d == Double.NEGATIVE_INFINITY)
{
//d == -Infinity
if (negativePrefix != '\uFFFF')
s.append(negativePrefix);
s.append(INFINITY);
if (negativeSuffix != '\uFFFF')
s.append(negativeSuffix);
}
else if (d == Double.POSITIVE_INFINITY)
//d == Infinity
s.append(INFINITY);
else if (d != d)
//d == NaN
s.append(NaN);
else if (d == 0.0)
{
if ( (Double.doubleToLongBits(d) & DoubleSignMask) != 0)
{
//d == -0.0
if (negativePrefix != '\uFFFF')
s.append(negativePrefix);
s.append('0').append(decimalPoint).append(ZEROS[numFractDigits]);
if (negativeSuffix != '\uFFFF')
s.append(negativeSuffix);
}
else
//d == 0.0
s.append('0').append(decimalPoint).append(ZEROS[numFractDigits]);
}
else
{
//convert to a positive format, and record whether we have a negative
//number so that we know later whether to add the negativeSuffix
boolean negative = false;
if (d < 0)
{
//Even if the number is negative, we only need to set the
//negative flag if there is a printable negativeSuffix
if (negativeSuffix != '\uFFFF')
negative = true;
if (negativePrefix != '\uFFFF')
s.append(negativePrefix);
d = -d;
}
//Find the magnitude. This is basically the exponent in normal form.
int magnitude = magnitude(d);
//First off, if the number is too small for the given format, we
//only print 0.0..., which makes this real quick
if ( (magnitude + numFractDigits) < 0)
{
appendNearlyZeroNumber(s, d, magnitude, numFractDigits, decimalPoint);
if (negative)
s.append(negativeSuffix);
return;
}
long l;
//Now scale the double to the biggest long value we need
//We need to handle the smallest magnitudes differently because of rounding errors
//This test is unlikely to ever be true. It would require numFractDigits
//to be 305 or more, which is pretty unlikely.
if (magnitude < -305)
l = (long) ((d*1E18) / d_tenthPowers[magnitude + 324]);
else
l = (long) (d / d_tenthPowers[magnitude + 323 - 17]);
//And round up if necessary. Add one to the numFractDigits digit if the
//numFractDigits+1 digit is 5 or greater. It is useful to know that
//given a long, l, the nth digit is obtained using the formula
// nthDigit = (l/(tenthPower(l)/l_tenthPowers[n-1]))%10;
long l_tenthPower = tenthPower(l);
//The numFractDigits+1 digit of the double is the
//numFractDigits+1+magnitude digit of the long.
//We only need worry about digits within the long. Very large numbers are
//not rounded because all the digits after the decimal points are 0 anyway
if (numFractDigits+magnitude+1 < l_tenthPowers.length)
{
long digit = (l/(l_tenthPower/l_tenthPowers[numFractDigits+magnitude+1]))%10;
if (digit >= 5)
{
l += l_tenthPower/l_tenthPowers[numFractDigits+magnitude];
}
}
//And now we just print out our long, with the decimal point character
//inserted in the right place, using as many places as we wanted.
appendAsDouble(s, l, l_tenthPower, magnitude, numFractDigits, decimalPoint, thousandsSeparator,
numDigitsSeparated, negativePrefix, negativeSuffix);
//Finally, append the negativeSuffix if necessary
if (negative)
s.append(negativeSuffix);
}
}
public void appendAsDouble(StringBuffer s, long l, long l_mag, int d_magnitude,
int numFractDigits, char decimalPoint, char thousandsSeparator,
int numDigitsSeparated, char negativePrefix, char negativeSuffix)
{
//If the magnitude is negative, we have a 0.xxx number
if (d_magnitude < 0)
{
s.append('0').append(decimalPoint).append(ZEROS[-d_magnitude-1]);
//And just print successive digits until we have reached numFractDigits
//First decrement numFractDigits by the number of digits already printed
numFractDigits += d_magnitude;
//get the magnitude of l
long c;
while(numFractDigits-- >= 0)
{
//Get the leading character (e.g. '62345/10000 = 6' using integer-divide)
c = l/l_mag;
//Append the digit character for this digit (e.g. number is 6, so character is '6')
s.append(charForDigit[(int) c]);
//Multiply by the leading digit by the magnitude so that we can eliminate the leading digit
//(e.g. 6 * 10000 = 60000)
c *= l_mag;
//and eliminate the leading digit (e.g. 62345-60000 = 2345)
if ( c <= l)
l -= c;
//Decrease the magnitude by 10, and repeat the loop.
l_mag = l_mag/10;
}
}
else
{
//Just keep printing until magnitude is 0
long c;
while(d_magnitude-- >= 0)
{
if (l_mag == 0) {s.append('0');continue;}
//Get the leading character (e.g. '62345/10000 = 6' using integer-divide)
c = l/l_mag;
//Append the digit character for this digit (e.g. number is 6, so character is '6')
s.append(charForDigit[(int) c]);
//Don't forget about the thousands separator
if( thousandsSeparator != NO_THOUSANDS_SEPARATOR && d_magnitude % numDigitsSeparated == (numDigitsSeparated-1) )
s.append(thousandsSeparator);
//Multiply by the leading digit by the magnitude so that we can eliminate the leading digit
//(e.g. 6 * 10000 = 60000)
c *= l_mag;
//and eliminate the leading digit (e.g. 62345-60000 = 2345)
if ( c <= l)
l -= c;
//Decrease the magnitude by 10, and repeat the loop.
l_mag = l_mag/10;
}
if(numFractDigits != 0)
s.append(decimalPoint);
if (l_mag == 0)
s.append(ZEROS[numFractDigits]);
else
{
while(numFractDigits-- > 0)
{
if (l_mag == 0) {s.append('0');continue;}
//Get the leading character (e.g. '62345/10000 = 6' using integer-divide)
c = l/l_mag;
//Append the digit character for this digit (e.g. number is 6, so character is '6')
s.append(charForDigit[(int) c]);
//Multiply by the leading digit by the magnitude so that we can eliminate the leading digit
//(e.g. 6 * 10000 = 60000)
c *= l_mag;
//and eliminate the leading digit (e.g. 62345-60000 = 2345)
if ( c <= l)
l -= c;
//Decrease the magnitude by 10, and repeat the loop.
l_mag = l_mag/10;
}
}
}
}
private void appendNearlyZeroNumber(StringBuffer s, double d, int d_magnitude,
int numFractDigits, char decimalPoint)
{
if (d_magnitude + numFractDigits == -1)
{
//Possibly too small, depends on whether the top digit is 5 or greater
//So we have to scale to get the leading digit
int i;
if (d_magnitude < -305)
//Probably not necessary. Who is going to print 305 places?
i = (int) ((d*1E19) / d_tenthPowers[d_magnitude + 324 + 18]);
else
i = (int) (d / d_tenthPowers[d_magnitude + 323]);
if (i >= 5)
{
//Not too small, we get to round up
s.append('0').append(decimalPoint).append(ZEROS[numFractDigits-1]);
s.append('1');
}
else
{
//Definitely too small. Just print zeros
s.append('0').append(decimalPoint).append(ZEROS[numFractDigits]);
}
}
else
{
//Definitely too small
s.append('0').append(decimalPoint).append(ZEROS[numFractDigits]);
}
}
/**
* Assumes i is positive. Returns the magnitude of i in base 10.
*/
private static long tenthPower(long i)
{
if (i < 10L) return 1;
else if (i < 100L) return 10L;
else if (i < 1000L) return 100L;
else if (i < 10000L) return 1000L;
else if (i < 100000L) return 10000L;
else if (i < 1000000L) return 100000L;
else if (i < 10000000L) return 1000000L;
else if (i < 100000000L) return 10000000L;
else if (i < 1000000000L) return 100000000L;
else if (i < 10000000000L) return 1000000000L;
else if (i < 100000000000L) return 10000000000L;
else if (i < 1000000000000L) return 100000000000L;
else if (i < 10000000000000L) return 1000000000000L;
else if (i < 100000000000000L) return 10000000000000L;
else if (i < 1000000000000000L) return 100000000000000L;
else if (i < 10000000000000000L) return 1000000000000000L;
else if (i < 100000000000000000L) return 10000000000000000L;
else if (i < 1000000000000000000L) return 100000000000000000L;
else return 1000000000000000000L;
}
public static int magnitude(double d)
{
//It works. What else can I say.
long doubleToLongBits = Double.doubleToLongBits(d);
int magnitude =
(int) ((((doubleToLongBits & DoubleExpMask) >> DoubleExpShift) - DoubleExpBias) * 0.301029995663981);
if (magnitude < -323)
magnitude = -323;
else if (magnitude > 308)
magnitude = 308;
if (d >= d_tenthPowers[magnitude+323])
{
while(magnitude < 309 && d >= d_tenthPowers[magnitude+323])
magnitude++;
magnitude--;
return magnitude;
}
else
{
while(magnitude > -324 && d < d_tenthPowers[magnitude+323])
magnitude--;
return magnitude;
}
}
static long[] l_tenthPowers = {
1,
10L,
100L,
1000L,
10000L,
100000L,
1000000L,
10000000L,
100000000L,
1000000000L,
10000000000L,
100000000000L,
1000000000000L,
10000000000000L,
100000000000000L,
1000000000000000L,
10000000000000000L,
100000000000000000L,
1000000000000000000L,
};
public static long getNthDigit(long l, int n)
{
return (l/(tenthPower(l)/l_tenthPowers[n-1]))%10;
}
public static void main(String args[])
{
main1(args);
//mainD(args);
}
public static void mainD(String[] args)
{
StringBuffer s = new StringBuffer();
DoubleUtil a = new DoubleUtil();
double d = 3459.955;
a.appendFormatted(s, d, 2, '.', ',', 3, '-', '\uffff');
System.out.println("s = "+s);
s.setLength(0);
DoubleUtil.append(s, d);
System.out.println("s2 = "+s);
long l = DoubleUtil.asLong(d);
System.out.println("asLong = " + l);
System.out.println("7th num = " + DoubleUtil.getNthDigit(l, 3));
double[] ds = {100D, 234000.567D, 2340000.56789D, 23400000.56789D, 234000000.56789D,
567.89023D, -1.234D, 0.2D, 0.03D, 0.00235D, 999, 900,
-0.000456D, -0.000543D, -0.0000456D, -0.0000543D };
for(int i = 0;i < ds.length;i++) {
s.setLength(0);
DoubleUtil.append(s, ds[i]);
System.out.println("int test "+s);
s.setLength(0);
DoubleUtil.fracPart(s, ds[i]);
System.out.println("fracPart of "+ds[i]+" = "+s);
s.setLength(0);
intPart(s, ds[i]);
System.out.println("integer part "+s);
}
}
public static void main1(String args[])
{
double[] ds = {100D, 234000.567D, 2340000.56789D, 23400000.56789D, 234000000.56789D,
567.89023D, -1.234D, 0.2D, 0.03D, 0.00235D, 999, 900
-0.000456D, -0.000543D, -0.0000456D, -0.0000543D, };
int repeat = 1000;
// int repeat = 1;
main_adj(repeat*5,"doubles",ds, "");
main_adj(repeat*5,"doubles",ds, "");
}
private static void main_adj(int repeat,String name,double[] arr, String list)
{
long time1, time2;
StringBuffer s;
DoubleUtil a = new DoubleUtil();
System.out.println("The " + name);
System.out.println(" " + list);
System.out.println("are appended to a StringBuffer one by one " + repeat + " times.");
s = new StringBuffer();
Runtime.getRuntime().gc();
System.out.println("Starting test");
time1 = System.currentTimeMillis();
for (int i = repeat; i > 0; i--)
for (int j = arr.length-1; j >= 0; j--)
DoubleUtil.append(s,arr[j]);
time1 = System.currentTimeMillis() - time1;
System.out.println(" The append took " + time1 + " milliseconds");
s = new StringBuffer();
Runtime.getRuntime().gc();
System.out.println("Starting test");
time1 = System.currentTimeMillis();
for (int i = repeat; i > 0; i--)
for (int j = arr.length-1; j >= 0; j--)
a.appendFormatted(s, arr[j], 4, '.', ',', 3, '-', '\uffff');
time1 = System.currentTimeMillis() - time1;
System.out.println(" The format append took " + time1 + " milliseconds");
s = new StringBuffer();
Runtime.getRuntime().gc();
System.out.println("Starting test");
time2 = System.currentTimeMillis();
for (int i = repeat; i > 0; i--)
for (int j = arr.length-1; j >= 0; j--)
s.append(arr[j]);
time2 = System.currentTimeMillis() - time2;
System.out.println(" The StringBuffer took " + time2 + " milliseconds");
s = new StringBuffer();
Runtime.getRuntime().gc();
System.out.println("Starting test");
time2 = System.currentTimeMillis();
DecimalFormat format = new DecimalFormat("#,##0.0000");
FieldPosition f = new FieldPosition(0);
for (int i = repeat; i > 0; i--)
for (int j = arr.length-1; j >= 0; j--)
format.format(arr[j], s, f);
time2 = System.currentTimeMillis() - time2;
System.out.println(" The DecimalFormat took " + time2 + " milliseconds");
s = new StringBuffer();
Runtime.getRuntime().gc();
s = new StringBuffer();
for (int j = 0; j < arr.length; j++)
{
DoubleUtil.append(s, arr[j]);
s.append(", ");
}
System.out.println(" " + s);
s = new StringBuffer();
for (int j = 0; j < arr.length; j++)
{
a.appendFormatted(s, arr[j], 4, '.', ',', 3, '-', '\uffff');
s.append(", ");
}
System.out.println(" " + s);
s = new StringBuffer();
for (int j = 0; j < arr.length; j++)
s.append(arr[j]).append(", ");
System.out.println(" " + s);
s = new StringBuffer();
for (int j = 0; j < arr.length; j++)
format.format(arr[j], s, f).append(", ");
System.out.println(" " + s);
System.out.println();
}
public static String toDoubleString(double d)
{
return append(new StringBuffer(), d).toString();
}
public static String append(String s, double d)
{
return append(new StringBuffer(s), d).toString();
}
public static StringBuffer append(StringBuffer s, double d)
{
if (d == Double.NEGATIVE_INFINITY)
s.append(NEGATIVE_INFINITY);
else if (d == Double.POSITIVE_INFINITY)
s.append(POSITIVE_INFINITY);
else if (d != d)
s.append(NaN);
else if (d == 0.0)
{
if ( (Double.doubleToLongBits(d) & DoubleSignMask) != 0)
s.append('-');
s.append(DOUBLE_ZERO);
}
else
{
if (d < 0)
{
s.append('-');
d = -d;
}
if (d >= 0.001 && d < 0.01)
{
long i = (long) (d * 1E20);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
s.append(DOUBLE_ZERO2);
appendFractDigits(s, i,-1);
}
else if (d >= 0.01 && d < 0.1)
{
long i = (long) (d * 1E19);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
s.append(DOUBLE_ZERO);
appendFractDigits(s, i,-1);
}
else if (d >= 0.1 && d < 1)
{
long i = (long) (d * 1E18);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
s.append(DOUBLE_ZERO0);
appendFractDigits(s, i,-1);
}
else if (d >= 1 && d < 10)
{
long i = (long) (d * 1E17);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
appendFractDigits(s, i,1);
}
else if (d >= 10 && d < 100)
{
long i = (long) (d * 1E16);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
appendFractDigits(s, i,2);
}
else if (d >= 100 && d < 1000)
{
long i = (long) (d * 1E15);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
appendFractDigits(s, i,3);
}
else if (d >= 1000 && d < 10000)
{
long i = (long) (d * 1E14);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
appendFractDigits(s, i,4);
}
else if (d >= 10000 && d < 100000)
{
long i = (long) (d * 1E13);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
appendFractDigits(s, i,5);
}
else if (d >= 100000 && d < 1000000)
{
long i = (long) (d * 1E12);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
appendFractDigits(s, i,6);
}
else if (d >= 1000000 && d < 10000000)
{
long i = (long) (d * 1E11);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
appendFractDigits(s, i,7);
}
else
{
int magnitude = magnitude(d);
long i;
if (magnitude < -305)
i = (long) (d*1E18 / d_tenthPowers[magnitude + 324]);
else
i = (long) (d / d_tenthPowers[magnitude + 323 - 17]);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
appendFractDigits(s, i, 1);
s.append('E');
append(s,magnitude);
}
}
return s;
}
public static void intPart(StringBuffer s, double d)
{
append(s, (int)Math.round(d - (d % .10)));
}
public static int intPart(double d)
{
return (int)Math.round(d - (d % .10));
}
public static long fracPart(double d)
{
StringBuffer sb;
fracPart(sb = new StringBuffer(), d);
return Long.parseLong(sb.toString());
}
public static void fracPart(StringBuffer s, double d)
{
if (d < 0)
{
s.append('-');
d = -d;
}
long i = 0;
int decimalOffset = 0;
if (d >= 0.001 && d < 0.01)
{
i = (long) (d * 1E20);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
s.append(ZERO0);
decimalOffset = -1;
}
else if (d >= 0.01 && d < 0.1)
{
i = (long) (d * 1E19);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
s.append(ZERO);
decimalOffset = -1;
}
else if (d >= 0.1 && d < 1)
{
i = (long) (d * 1E18);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
decimalOffset = -1;
}
else if (d >= 1 && d < 10)
{
i = (long) (d * 1E17);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
decimalOffset = 1;
}
else if (d >= 10 && d < 100)
{
i = (long) (d * 1E16);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
decimalOffset = 2;
}
else if (d >= 100 && d < 1000)
{
i = (long) (d * 1E15);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
decimalOffset = 3;
}
else if (d >= 1000 && d < 10000)
{
i = (long) (d * 1E14);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
decimalOffset = 4;
}
else if (d >= 10000 && d < 100000)
{
i = (long) (d * 1E13);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
decimalOffset = 5;
}
else if (d >= 100000 && d < 1000000)
{
i = (long) (d * 1E12);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
decimalOffset = 6;
}
else if (d >= 1000000 && d < 10000000)
{
i = (long) (d * 1E11);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
decimalOffset = 7;
}
else if(s.length() > 0 && s.charAt(0) == '-')
{
int magnitude = magnitude(d);
if (magnitude < -305)
i = (long) (d*1E18 / d_tenthPowers[magnitude + 324]);
else
i = (long) (d / d_tenthPowers[magnitude + 323 - 17]);
i = i%100 >= 50 ? (i/100) + 1 : i/100;
s.append('E');
append(s,magnitude);
}
long mag = tenthPower(i);
long c;
int mantissa = magnitude(d) < 0 && s.length() > 0 && s.charAt(0) == '-' ? 1 : 0;
while ( i > 0 )
{
c = i/mag;
decimalOffset--;
if(decimalOffset < 0) {
if(mantissa > 0) {
s.insert(mantissa++, charForDigit[(int) c]);
}
else {
s.append(charForDigit[(int) c]);
}
}
c *= mag;
if ( c <= i)
i -= c;
mag = mag/10;
}
if(s.indexOf("E") > -1) {
int exp = Character.digit(s.charAt(s.length() - 1), 10) + mantissa - 3;
s.setLength(s.length() - 1);
s.append(exp);
}
if(s.length() < 1) s.append('0');
}
public static void append(StringBuffer s, int i)
{
if (i < 0)
{
if (i == Integer.MIN_VALUE)
{
//cannot make this positive due to integer overflow
s.append("-2147483648");
}
s.append('-');
i = -i;
}
int c;
if (i < 10)
{
//one digit
s.append(charForDigit[i]);
}
else if (i < 100)
{
//two digits
s.append(charForDigit[i/10]);
s.append(charForDigit[i%10]);
}
else if (i < 1000)
{
//three digits
s.append(charForDigit[i/100]);
s.append(charForDigit[(c=i%100)/10]);
s.append(charForDigit[c%10]);
}
else if (i < 10000)
{
//four digits
s.append(charForDigit[i/1000]);
s.append(charForDigit[(c=i%1000)/100]);
s.append(charForDigit[(c%=100)/10]);
s.append(charForDigit[c%10]);
}
else if (i < 100000)
{
//five digits
s.append(charForDigit[i/10000]);
s.append(charForDigit[(c=i%10000)/1000]);
s.append(charForDigit[(c%=1000)/100]);
s.append(charForDigit[(c%=100)/10]);
s.append(charForDigit[c%10]);
}
else if (i < 1000000)
{
//six digits
s.append(charForDigit[i/100000]);
s.append(charForDigit[(c=i%100000)/10000]);
s.append(charForDigit[(c%=10000)/1000]);
s.append(charForDigit[(c%=1000)/100]);
s.append(charForDigit[(c%=100)/10]);
s.append(charForDigit[c%10]);
}
else if (i < 10000000)
{
//seven digits
s.append(charForDigit[i/1000000]);
s.append(charForDigit[(c=i%1000000)/100000]);
s.append(charForDigit[(c%=100000)/10000]);
s.append(charForDigit[(c%=10000)/1000]);
s.append(charForDigit[(c%=1000)/100]);
s.append(charForDigit[(c%=100)/10]);
s.append(charForDigit[c%10]);
}
else if (i < 100000000)
{
//eight digits
s.append(charForDigit[i/10000000]);
s.append(charForDigit[(c=i%10000000)/1000000]);
s.append(charForDigit[(c%=1000000)/100000]);
s.append(charForDigit[(c%=100000)/10000]);
s.append(charForDigit[(c%=10000)/1000]);
s.append(charForDigit[(c%=1000)/100]);
s.append(charForDigit[(c%=100)/10]);
s.append(charForDigit[c%10]);
}
else if (i < 1000000000)
{
//nine digits
s.append(charForDigit[i/100000000]);
s.append(charForDigit[(c=i%100000000)/10000000]);
s.append(charForDigit[(c%=10000000)/1000000]);
s.append(charForDigit[(c%=1000000)/100000]);
s.append(charForDigit[(c%=100000)/10000]);
s.append(charForDigit[(c%=10000)/1000]);
s.append(charForDigit[(c%=1000)/100]);
s.append(charForDigit[(c%=100)/10]);
s.append(charForDigit[c%10]);
}
else
{
//ten digits
s.append(charForDigit[i/1000000000]);
s.append(charForDigit[(c=i%1000000000)/100000000]);
s.append(charForDigit[(c%=100000000)/10000000]);
s.append(charForDigit[(c%=10000000)/1000000]);
s.append(charForDigit[(c%=1000000)/100000]);
s.append(charForDigit[(c%=100000)/10000]);
s.append(charForDigit[(c%=10000)/1000]);
s.append(charForDigit[(c%=1000)/100]);
s.append(charForDigit[(c%=100)/10]);
s.append(charForDigit[c%10]);
}
}
private static void appendFractDigits(StringBuffer s, long i, int decimalOffset)
{
long mag = tenthPower(i);
long c;
while ( i > 0 )
{
c = i/mag;
s.append(charForDigit[(int) c]);
decimalOffset--;
if (decimalOffset == 0)
s.append('.');
c *= mag;
if ( c <= i)
i -= c;
mag = mag/10;
}
if (i != 0)
s.append(charForDigit[(int) i]);
else if (decimalOffset > 0)
{
s.append(ZEROS[decimalOffset]);
decimalOffset = 1;
}
decimalOffset--;
if (decimalOffset == 0)
s.append(DOT_ZERO);
else if (decimalOffset == -1)
s.append('0');
}
public static void appendIntegerDigits(StringBuffer s, long i, int decimalOffset, boolean isPosFrac, boolean hasExp)
{
long mag = tenthPower(i);
long c;
while ( i > 0 )
{
c = i/mag;
s.append(charForDigit[(int) c]);
decimalOffset--;
if (decimalOffset == 0)
break;
c *= mag;
if ( c <= i)
i -= c;
mag = mag/10;
}
if (i != 0 && decimalOffset != 0)
s.append(charForDigit[(int) i]);
else if (decimalOffset > 0)
{
s.append(ZEROS[decimalOffset]);
decimalOffset = 1;
}
//
// decimalOffset--;
// if (decimalOffset == 0)
// s.append(DOT_ZERO);
// else if (decimalOffset == -1)
// s.append('0');
}
public static final char[] NEGATIVE_INFINITY = {'-','I','n','f','i','n','i','t','y'};
public static final char[] POSITIVE_INFINITY = {'I','n','f','i','n','i','t','y'};
public static final char[] DOUBLE_ZERO = {'0','.','0'};
public static final char[] DOUBLE_ZERO2 = {'0','.','0','0'};
public static final char[] DOUBLE_ZERO0 = {'0','.'};
public static final char[] DOT_ZERO = {'.','0'};
public static final char[] ZERO = {'0'};
public static final char[] ZERO0 = {'0','0'};
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment