Created
November 22, 2020 13:04
-
-
Save Gabrock94/0681a24a840fca983ae8d34f997665a6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import pandas as pd | |
import sklearn as skl | |
import scipy as sp | |
import matplotlib.pyplot as plt | |
# Define the paths | |
BASEPATH = '/home/giulio/Repositories/covres/' #This is the folder where db is | |
# import database | |
df = pd.read_csv(BASEPATH + 'Raw/db.csv') | |
# This generates the heatmap | |
corr=df.corr() #This gets the correlation of the dataset | |
plt.figure(figsize=(10,10)) #change figsize to get a smaller or bigger figure | |
plt.xticks(range(len(df.columns)),df.columns,rotation=90) | |
plt.yticks(range(len(df.columns)),df.columns) | |
plt.imshow(corr, cmap='hot',interpolation="nearest") | |
plt.colorbar() | |
#save corr to file | |
corr.to_csv(BASEPATH + 'Processed/corr.csv') | |
# This section gets the number of missing values per column | |
X = [] | |
print("Percentage of Missing values") | |
for col in df.columns: | |
X.append([col, len(df[df[col].isnull()]) / len(df) * 100]) | |
missings = pd.DataFrame(X, columns=['Variable', '% Missing']) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment