Created
August 6, 2012 13:29
-
-
Save GaelVaroquaux/3274477 to your computer and use it in GitHub Desktop.
Benching neurimaging I/O
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Benching I/O with joblib and other libraries. Comment and | |
un-comment what you are interested in. | |
Warning: this is slow, and the benchs are easily offset by other disk | |
activity. | |
""" | |
import os | |
import time | |
import shutil | |
import numpy as np | |
import joblib | |
from joblib.disk import disk_used | |
def clear_out(): | |
if os.path.exists('out'): | |
shutil.rmtree('out') | |
os.mkdir('out') | |
def kill_disk_cache(): | |
if os.name == 'posix' and os.uname()[0] == 'Linux': | |
try: | |
open('/proc/sys/vm/drop_caches', 'w').write('3\n') | |
except IOError, e: | |
if e.errno == 13: | |
print 'Please run me as root' | |
else: | |
raise e | |
else: | |
# Write ~100M to the disk | |
file('tmp', 'w').write(np.random.random(2e7)) | |
def timeit(func, *args, **kwargs): | |
times = list() | |
for _ in range(7): | |
kill_disk_cache() | |
t0 = time.time() | |
out = func(*args, **kwargs) | |
if 1: | |
# Just time the function | |
t1 = time.time() | |
times.append(t1 - t0) | |
else: | |
# Compute a hash of the output, to estimate the time | |
# necessary to access the elements: this is a better | |
# estimate of the time to load with memmapping. | |
joblib.hash(out) | |
t1 = time.time() | |
joblib.hash(out) | |
t2 = time.time() | |
times.append(t2 - t0 - 2*(t2 - t1)) | |
times.sort() | |
#return times[0] | |
return np.mean(times[1:-1]) | |
def print_line(dataset, library, strategy, write_time, read_time, disk_used): | |
print '% 15s, %10s, %12s, % 6.3f, % 7.4f, % 5.1f' % ( | |
dataset, library, strategy, write_time, read_time, disk_used) | |
def bench_dump(dataset, name='', compress_levels=(0, 1, 3, 6, 9)): | |
time_write = list() | |
time_read = list() | |
du = list() | |
for compress in compress_levels: | |
clear_out() | |
time_write = \ | |
timeit(joblib.dump, dataset, 'out/test.pkl', compress=compress) | |
# 0) | |
#joblib.dump(dataset, 'out/test.pkl', compress=compress) | |
du = disk_used('out')/1024. | |
time_read = timeit(joblib.load, 'out/test.pkl') | |
print_line(name, 'joblib', 'zlib%i' % compress, time_write, | |
time_read, du) | |
clear_out() | |
time_write = timeit(joblib.dump, dataset, 'out/test.pkl') | |
time_read = timeit(joblib.load, 'out/test.pkl', mmap_mode='r') | |
du = disk_used('out')/1024. | |
print_line(name, 'joblib', 'mmap', time_write, time_read, du) | |
print '% 15s, %10s, %12s, % 6s, % 6s, % 6s' % ( | |
'Dataset', 'library', 'strategy', 'write', 'read', 'disk') | |
# Neuroimaging specific I/O | |
import nibabel | |
import tables | |
#tables.setBloscMaxThreads(1) | |
def load_nii(filename, sum=True): | |
img = nibabel.load(filename) | |
if sum: | |
return img.get_data().sum(), img.get_affine() | |
return img.get_data(), img.get_affine() | |
def write_nii(d, filename): | |
img = nibabel.Nifti1Image(d[0], d[1]) | |
nibabel.save(img, filename) | |
def write_hdf(arrays): | |
h5file = tables.openFile("out/test.h5", | |
mode = "w", title = "Test file") | |
for index, array in enumerate(arrays): | |
h5file.createArray(h5file.root, 'array%i' % index, | |
array) | |
h5file.close() | |
def write_chdf(arrays, compress=0, complib='zlib'): | |
if compress == 0: | |
return write_hdf(arrays) | |
h5file = tables.openFile("out/test.h5", | |
mode = "w", title = "Test file") | |
filters = tables.Filters(complevel=compress, | |
complib=complib) | |
for index, array in enumerate(arrays): | |
shape = array.shape | |
atom = tables.Atom.from_dtype(array.dtype) | |
ca = h5file.createCArray(h5file.root, 'array%i' % index, | |
atom, shape, filters=filters) | |
ca[...] = array | |
h5file.close() | |
def load_hdf(sum=True): | |
h5file = tables.openFile("out/test.h5", "r") | |
out = list() | |
for node in h5file.iterNodes(h5file.root): | |
out.append(node.read().sum()) | |
h5file.close() | |
return out | |
def bench_hdf(d, name): | |
clear_out() | |
for complib in "zlib", "lzo": | |
for compress in (0, 1, 3, 6, 9): | |
if compress == 0 and complib != 'zlib': | |
continue | |
if compress == 9 and complib == 'zlib': | |
# Way to slow to be useful | |
continue | |
if compress != 1 and complib == 'lzo': | |
continue | |
clear_out() | |
h5_save_time = timeit(write_chdf, d, complib=complib, | |
compress=compress) | |
h5_du = disk_used('out')/1024. | |
h5_load_time = timeit(load_hdf) | |
print_line(name, 'pytables', '%s %i' % (complib, compress), | |
h5_save_time, h5_load_time, h5_du) | |
for c_order in (True, False): | |
for name, nifti_file in ( | |
('MNI', '/usr/share/fsl/data/atlases/MNI/MNI-prob-1mm.nii.gz'), | |
('Juelich', | |
'/usr/share/fsl/data/atlases/Juelich/Juelich-prob-2mm.nii.gz'), | |
('localiser', | |
'~/.nipy/data/s12069_swaloc1_corr.nii.gz'), | |
): | |
name = '% 5s(%s)' % (name, 'C' if c_order else 'F') | |
nifti_file = os.path.expanduser(nifti_file) | |
d = load_nii(nifti_file, sum=False) | |
if c_order: | |
d = (np.ascontiguousarray(d[0]), d[1]) | |
compress_load_time = timeit(load_nii, nifti_file) | |
clear_out() | |
compress_save_time = timeit(write_nii, d, 'out/test.nii.gz') | |
compress_nii_du = disk_used('out')/1024. | |
strategy = '.nii.gz' | |
library = 'Nifti' | |
print_line(name, library, strategy, | |
compress_save_time, compress_load_time, | |
compress_nii_du) | |
clear_out() | |
save_time = timeit(write_nii, d, 'out/test.nii') | |
nii_du = disk_used('out')/1024. | |
load_time = timeit(load_nii, 'out/test.nii') | |
strategy = ' .nii' | |
print_line(name, library, strategy, | |
save_time, load_time, nii_du) | |
clear_out() | |
bench_hdf(d, name=name) | |
# Bench numpy's savez | |
clear_out() | |
np_save_time = timeit(np.save, 'out/test.npy', | |
d[0]) | |
np_du = disk_used('out')/1024. | |
def load_np(filename, sum=True): | |
data = np.load(filename) | |
if sum: | |
return data.sum() | |
return data | |
np_load_time = timeit(load_np, 'out/test.npy') | |
library = 'numpy' | |
strategy = '' | |
print_line(name, library, strategy, | |
np_save_time, np_load_time, np_du) | |
clear_out() | |
bench_dump(d, name, compress_levels=(0, 1, 6)) | |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" Joblib comparitive results. | |
""" | |
import pylab as pl | |
import numpy as np | |
def autolabel(rects, y_max): | |
# attach some text labels | |
ax = pl.gca() | |
for rect in rects: | |
height = rect.get_height() | |
c = rect.get_facecolor()[:3] | |
if np.mean(c) > .5: | |
color = 'k' | |
else: | |
color = 'w' | |
if height > y_max: | |
if height > 20: | |
txt = '%i' % height | |
else: | |
txt = '%.1f' % height | |
ax.text(rect.get_x() + 1.35*rect.get_width()/2., | |
.99*y_max, txt, | |
rotation=90, size=11, color=color, | |
ha='center', va='top') | |
res = np.recfromcsv('results_nii.csv') | |
data = dict() | |
for library in np.unique(res['library']): | |
this_res = res[res['library'] == library] | |
for strategy in np.unique(this_res['strategy']): | |
name = '%s, %s' % (library.strip(), strategy.strip()) | |
data[name] = this_res[this_res['strategy'] == strategy] | |
n_libraries = len(data) | |
width = .92/n_libraries | |
colors = pl.cm.spectral(np.linspace(0, .92, n_libraries-2)) | |
colors = np.r_[colors, ((0, 0, 0, 0),)] | |
colors[-4:, :] = pl.cm.autumn(np.linspace(0, 1.1, 4)) | |
tmp = colors[1].copy() | |
colors[1:5] = colors[2:6] | |
colors[5] = tmp | |
colors[-5] = (1., .4, .7, 1.) | |
############################################################################### | |
# Plot a summary | |
legend_items = dict() | |
pl.figure(-1, figsize=(8, 4)) | |
pl.clf() | |
for index, metric in enumerate(('read', 'write', 'disk')): | |
ax = pl.axes([.1, .06, .83, .87]) | |
i = 0 | |
for library, stats in sorted(data.iteritems()): | |
if library in ('Nifti, .nii.gz', ): | |
continue | |
stats = np.sort(stats) | |
stats = stats[metric] | |
stats = stats / data['Nifti, .nii.gz'][metric] | |
indices = (i-.5*n_libraries) * .07 * width + index * width | |
bars = pl.plot([indices ], [stats.mean(), ], 'o', | |
color=colors[i][:3], | |
label=library, linewidth=4,) | |
pl.plot([indices, ]*len(stats), stats, '+', color=colors[i][:3]) | |
if metric == 'write': | |
legend_items[library] = bars[0] | |
i += 1 | |
proxy_artist = pl.Rectangle((0, 0), .1, .1, fc="w", ec="w", alpha=0) | |
legend_artist = list() | |
for lib in ('joblib', 'pytables'): | |
these_artists = [] | |
if lib == 'joblib': | |
for _ in range(4): | |
these_artists.extend([('', proxy_artist), ]) | |
these_artists.extend([(n.ljust(24), a) | |
for n, a in sorted(legend_items.iteritems()) | |
if n.startswith('Nifti')]) | |
these_artists.sort() | |
these_artists.extend([('', proxy_artist), ]) | |
these_artists.extend([(n.ljust(32), a) | |
for n, a in sorted(legend_items.iteritems()) | |
if n.startswith(lib)]) | |
if lib == 'joblib': | |
for _ in range(4): | |
these_artists.extend([('', proxy_artist), ]) | |
these_artists.extend([(n.strip(', ').ljust(20), a) | |
for n, a in legend_items.iteritems() | |
if n.startswith('numpy')]) | |
legend_artist.extend(these_artists) | |
pl.ylim(ymin=.0003) | |
pl.plot([-0.04, 0.18], [1, 1], color='.8', zorder=0) | |
pl.xlim(-0.04, 0.18) | |
pl.gca().set_yscale('log') | |
pl.text(-.02, 9, 'Read speed', size=14) | |
pl.text(.06, 9, 'Write speed', size=14) | |
pl.text(.13, 9, 'Disk used', size=14) | |
pl.xticks(()) | |
pl.ylabel('Reference: nii.gz') | |
pl.legend(zip(*legend_artist)[1], | |
zip(*legend_artist)[0], | |
loc='lower right', ncol=4, prop=dict(size=13), | |
handlelength=1, columnspacing=0, | |
borderaxespad=0.01, | |
handletextpad=.3, labelspacing=.4, | |
frameon=False, numpoints=1) | |
pl.savefig('summary.png') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment