Created
September 24, 2012 13:08
-
-
Save GaelVaroquaux/3775870 to your computer and use it in GitHub Desktop.
Benchmark of elastic net on a very sparse system
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Licence : BSD | |
# Author: Gael Varoquaux | |
from time import time | |
import numpy as np | |
import pylab as pl | |
from scipy import linalg, ndimage | |
from sklearn import linear_model | |
from sklearn.linear_model.coordinate_descent import elastic_net_strong_rule_active_set | |
from sklearn.linear_model.cd_fast import elastic_net_kkt_violating_features | |
from sklearn.utils import check_random_state | |
############################################################################### | |
# Fonction to generate data | |
def create_simulation_data(snr=5, n_samples=2 * 100, size=12, random_state=0): | |
generator = check_random_state(random_state) | |
roi_size = 3 # size / 3 | |
smooth_X = 2 | |
### Coefs | |
w = np.zeros((size, size, size)) | |
w[0:roi_size, 0:roi_size, 0:roi_size] = -0.6 | |
w[-roi_size:, -roi_size:, 0:roi_size] = 0.5 | |
w[0:roi_size, -roi_size:, -roi_size:] = -0.6 | |
w[-roi_size:, 0:roi_size:, -roi_size:] = 0.5 | |
w = w.ravel() | |
### Images | |
XX = generator.randn(n_samples, size, size, size) | |
X = [] | |
y = [] | |
for i in range(n_samples): | |
Xi = ndimage.filters.gaussian_filter(XX[i, :, :, :], smooth_X) | |
Xi = Xi.ravel() | |
X.append(Xi) | |
y.append(np.dot(Xi, w)) | |
X = np.array(X) | |
y = np.array(y) | |
norm_noise = linalg.norm(y, 2) / np.exp(snr / 20.) | |
orig_noise = generator.randn(y.shape[0]) | |
noise_coef = norm_noise / linalg.norm(orig_noise, 2) | |
# Add additive noise | |
noise = noise_coef * orig_noise | |
snr = 20 * np.log(linalg.norm(y, 2) / linalg.norm(noise, 2)) | |
print "SNR : %d " % snr | |
y += noise | |
X -= X.mean(axis=-1)[:, np.newaxis] | |
X /= X.std(axis=-1)[:, np.newaxis] | |
X_test = X[n_samples / 2:, :] | |
X_train = X[:n_samples / 2, :] | |
y_test = y[n_samples / 2:] | |
y = y[:n_samples / 2] | |
return X_train, X_test, y, y_test, snr, noise, w, size | |
def plot_slices(data, title=None): | |
pl.figure(figsize=(5.5, 2.2)) | |
vmax = np.abs(data).max() | |
for i in (0, 6, 11): | |
pl.subplot(1, 3, i / 5 + 1) | |
pl.imshow(data[:, :, i], vmin=-vmax, vmax=vmax, | |
interpolation="nearest", cmap=pl.cm.RdBu_r) | |
pl.xticks(()) | |
pl.yticks(()) | |
pl.subplots_adjust(hspace=0.05, wspace=0.05, left=.03, right=.97) | |
if title is not None: | |
pl.suptitle(title) | |
############################################################################### | |
# Create data | |
X_train, X_test, y_train, y_test, snr, noise, coefs, size =\ | |
create_simulation_data(snr=10, n_samples=400, size=60) | |
coefs = np.reshape(coefs, [size, size, size]) | |
#plot_slices(coefs, title="Ground truth") | |
n_samples = len(X_train) | |
alpha = 1. | |
rho = 0.95 | |
l1_reg = alpha * rho * n_samples | |
l2_reg = alpha * (1.0 - rho) * n_samples | |
############################################################################### | |
# Compute the results and estimated coef maps for different estimators | |
classifiers = [ | |
#('enet', linear_model.ElasticNet(alpha=alpha, rho=rho)), | |
('enet_sr', linear_model.ElasticNet(alpha=alpha, rho=rho, | |
use_strong_rule=True)), | |
] | |
# Run the estimators | |
for name, classifier in classifiers: | |
times = list() | |
for _ in range(2): | |
t1 = time() | |
classifier.fit(X_train, y_train) | |
elapsed_time = time() - t1 | |
times.append(elapsed_time) | |
coefs = classifier.coef_ | |
coef_flat = np.ascontiguousarray(coefs.copy().ravel()) | |
coefs = np.reshape(coefs, [size, size, size]) | |
score = classifier.score(X_test, y_test) | |
title = '%s: prediction score %.3f, training time: %.4fs (%.4fs)' % ( | |
classifier.__class__.__name__, score, | |
np.mean(times), np.std(times)) | |
# We use the plot_slices function provided in the example to | |
# plot the results | |
#plot_slices(coefs, title=title) | |
print title | |
print 'Number of non-zero coefs', (np.abs(coefs) > 1e-9).sum() | |
print 'Number of coefs selected by the strong rules', \ | |
np.sum(elastic_net_strong_rule_active_set(X_train, | |
y_train, alpha=alpha, rho=rho)) | |
print 'Number of coefs selected by the strong rules with reinit', \ | |
np.sum(elastic_net_strong_rule_active_set(X_train, | |
y_train, alpha=alpha, rho=rho, | |
coef_init=coef_flat, alpha_init=alpha)) | |
kkt_violators = elastic_net_kkt_violating_features( | |
coef_flat, l1_reg, l2_reg, X_train, y_train) | |
print 'Number of violating features', len(kkt_violators) | |
pl.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment