Last active
April 12, 2016 13:30
-
-
Save Gedevan-Aleksizde/2d054ad0879b1c10035f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* VARMA (p,q) */ | |
data { | |
int<lower=1> T ; // num observations | |
int<lower=1> N ; // num series | |
int<lower=0> p ; // AR(p) | |
int<lower=0> q ; // MA(q) | |
vector[N] y[T] ; // observed outputs | |
int<lower=0> T_forecast ; // forecasting span | |
} | |
parameters { | |
vector[N] mu ; // mean coeffs | |
matrix[N,N] Psi[p] ; // autoregression coeff matrix | |
matrix[N,N] Theta[q] ; // moving avg coeff matrix | |
cov_matrix[N] Sigma ; // noise scale matrix | |
} | |
transformed parameters{ | |
vector[N] eps[T] ; // error terms | |
eps[1] <- y[1] -mu ; | |
for ( t in 2:T){ | |
eps[t] <- y[t] - mu ; | |
for( i in 1:min(t-1,p) ){ | |
eps[t] <- eps[t] - Psi[i] * y[t-i] ; | |
} | |
for( i in 1:min(t-1,q) ){ | |
eps[t] <- eps[t] - Theta[i] * eps[t-i] ; | |
} | |
} | |
} | |
model { | |
vector[N] eta[T] ; | |
/* priors */ | |
mu ~ normal(0,10) ; | |
for( i in 1:p) | |
to_vector(Psi[i]) ~ normal(0,2) ; | |
for( i in 1:q) | |
to_vector(Theta[i]) ~ normal(0,2) ; | |
Sigma ~ inv_wishart(N, N*diag_matrix(rep_vector(1,N))) ; | |
/* likelihood */ | |
for (t in 1:T){ | |
eta[t] <- mu ; | |
for( i in 1:min(t-1,p)) | |
eta[t] <- eta[t] + Psi[i] * y[t-i] ; | |
for( i in 1:min(t-1,q)) | |
eta[t] <- eta[t] + Theta[i] * eps[t-i] ; | |
y[t] ~ multi_normal(eta[t], Sigma) ; | |
} | |
} | |
/* prediction */ | |
generated quantities{ | |
vector[N] y_pred[T+T_forecast] ; | |
vector[N] eps_pred[T+T_forecast] ; | |
eps_pred[1:T] <- eps ; | |
y_pred[1:T] <- y ; | |
for( t in (T+1):(T+T_forecast)) { | |
eps_pred[t] <- multi_normal_rng(rep_vector(0,N), Sigma) ; | |
y_pred[t] <- mu + eps_pred[t] ; | |
for( i in 1:p) | |
y_pred[t] <- y_pred[t] + Psi[i] * y_pred[t-i] ; | |
for( i in 1:q) | |
y_pred[t] <- y_pred[t] + Theta[i] * eps_pred[t-i] ; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment