Last active
April 12, 2016 13:28
-
-
Save Gedevan-Aleksizde/4cff7c20540cc410c616 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(tidyr) # ver. 0.3.1. | |
library(dplyr) # ver. 0.4.3 | |
library(rstan) # ver. 2.9.0 | |
library(forecast) # ver. 6.2 | |
# 並列化させる設定 | |
rstan_options(auto_write = TRUE) | |
options(mc.cores = parallel::detectCores()) | |
N <- 2 # num series | |
Time <- 400 # span | |
Time.forecast <- 50 # forecasting span | |
psi <- matrix(c(0.4, 0.3, 0, -0.2), ncol=N) | |
theta <- matrix(c(0.3, 0.2, 0.1, 0), ncol=N) | |
mu <- matrix(c(1,2), ncol=1) | |
# ここは VARMA(1,1) と同じ | |
# generate random numbers | |
#eps_l <- matrix(mvrnorm(n=1, rep(0,N), 5*diag(N)), nrow=N) | |
#sample.data.2 <- eps_l + mu | |
#for( t in 2:Time){ | |
# eps <- matrix(mvrnorm(n=1, rep(0,N), 2*diag(N)), nrow=N) | |
# sample.data.2 <- cbind(sample.data.2, mu + matrix(psi %*% sample.data.2[,t-1] + theta %*% eps_l + eps, nrow=N) ) | |
# eps_l <- eps | |
#} | |
# VARMA(p,q) | |
# modify plot function | |
plot.stan.pred.2 <- function(data,stanout, Time, Time.forecast, N, p, q, span=NULL){ | |
if (is.null(span) ) span <- 1:(Time + Time.forecast) | |
y_pred <- data.frame() | |
for ( i in 1:N){ | |
m.pred <- rstan::extract(stanout, "y_pred")$y_pred[,Time+1:Time.forecast, i] | |
# 90 % pred interval | |
temp <- data.frame(t = Time+1:Time.forecast, | |
series = i, | |
y90_l = apply(m.pred, 2, quantile, probs=.05), | |
y90_u = apply(m.pred, 2, quantile, probs=.95), | |
y80_l = apply(m.pred, 2, quantile, probs=.1), | |
y80_u = apply(m.pred, 2, quantile, probs=.9), | |
y_med = apply(m.pred, 2, median), | |
y_mean = apply(m.pred, 2, mean, rm.na=T) | |
) | |
y_pred <- rbind(y_pred, temp) | |
} | |
temp <- data.frame(t=1:Time, data) | |
colnames(temp)[1+1:N] <- seq(1:N) | |
y_pred <- temp %>% gather(key=series, value=y_mean, -t) %>% mutate(series=as.integer(series)) %>% bind_rows(y_pred) | |
y_pred <- y_pred %>% filter(t %in% span) | |
ggplot(y_pred) + geom_line(aes(x=t, y=y_mean)) + geom_line(aes(x=t, y_med), linetype=2) + | |
geom_ribbon(aes(x=t, ymin=y90_l, ymax=y90_u), alpha=.2, fill="blue") + geom_ribbon(aes(x=t, ymin=y80_l, ymax=y80_u), alpha=.5, fill="grey") + | |
xlim(c(min(span),max(span))) + labs(title=paste0("ARMA(", p, ",", q, ") Forecasts by MCMC"), y="y") + facet_wrap(~series, nrow = N) | |
} | |
# VARMA(1,1) N=2 | |
N <- 2 # num series | |
Time <- 400 # span | |
Time.forecast <- 50 # forecasting span | |
psi <- matrix(c(0.4, 0.3, 0, -0.2), ncol=N) | |
theta <- matrix(c(0.3, 0.2, 0.1, 0), ncol=N) | |
mu <- matrix(c(1,2), ncol=1) | |
# generate random numbers | |
eps_l <- matrix(mvrnorm(n=1, rep(0,N), 5*diag(N)), nrow=N) | |
sample.data.2 <- eps_l + mu | |
for( t in 2:Time){ | |
eps <- matrix(mvrnorm(n=1, rep(0,N), 2*diag(N)), nrow=N) | |
sample.data.2 <- cbind(sample.data.2, mu + matrix(psi %*% sample.data.2[,t-1] + theta %*% eps_l + eps, nrow=N) ) | |
eps_l <- eps | |
} | |
stan.varmapq <- stan_model(file="varma_pq.stan") # compile | |
p <- 2 | |
q <- 0 | |
res.stan.3 <- sampling(stan.varmapq, data=list(T=Time, N=N, y=t(sample.data.2), T_forecast=Time.forecast, p=p, q=q), chain=1 ) | |
print(res.stan.3, pars=c("mu","Psi","Theta","Sigma")) | |
print(plot.stan.pred.2(t(sample.data.2), res.stan.3, Time, Time.forecast, N, p, q, 350:(Time+Time.forecast))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment