Skip to content

Instantly share code, notes, and snippets.

@GenericMage
Created February 28, 2025 18:45
Show Gist options
  • Save GenericMage/ecb87b7fd558e3941900ad20395e0ea5 to your computer and use it in GitHub Desktop.
Save GenericMage/ecb87b7fd558e3941900ad20395e0ea5 to your computer and use it in GitHub Desktop.
Created using remix-ide: Realtime Ethereum Contract Compiler and Runtime. Load this file by pasting this gists URL or ID at https://remix.ethereum.org/#version=soljson-v0.8.28+commit.7893614a.js&optimize=false&runs=200&gist=
// File: contracts/Ownable.sol
/// @title Owner Base Class
/*
* __ __ _______ ____
* / / / / / / ___// __ \
* / / / / / /\__ \/ / / /
* / /___/ /_/ /___/ / /_/ /
* /_____/\____//____/_____/
*/
pragma solidity ^0.8.28;
interface IOwnable {
function transferOwnership(address newOwner) external;
}
contract Ownable is IOwnable {
address internal _owner;
event OwnershipRenounced(address indexed previousOwner);
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
constructor() {
_owner = msg.sender;
}
function owner() public view returns (address) {
return _owner;
}
modifier onlyOwner() {
require(isOwner());
_;
}
function isOwner() public view returns (bool) {
return msg.sender == _owner;
}
function renounceOwnership() public onlyOwner {
emit OwnershipRenounced(_owner);
_owner = address(0);
}
function transferOwnership(address newOwner) public onlyOwner {
_transferOwnership(newOwner);
}
function _transferOwnership(address newOwner) internal {
require(newOwner != address(0));
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
// File: contracts/Normalizer.sol
/// @title Base Decimal Normalizer based on work by Paul Razvan Berg
// Sources: https://github.com/PaulRBerg/prb-contracts/blob/main/src/token/erc20/ERC20Normalizer.sol
/*
* __ __ _______ ____
* / / / / / / ___// __ \
* / / / / / /\__ \/ / / /
* / /___/ /_/ /___/ / /_/ /
* /_____/\____//____/_____/
*/
pragma solidity ^0.8.28;
abstract contract Normalizer {
mapping(uint8 => uint256) private _scalars;
function _normalize(
uint256 amount,
uint8 decimals
) internal returns (uint256) {
if (decimals == 18) {
return amount;
}
uint256 scalar = _computeScalar(decimals);
return scalar == 1 ? amount : amount * _computeScalar(decimals);
}
function _denormalize(
uint256 amount,
uint8 decimals
) internal returns (uint256) {
if (decimals == 18) {
return amount;
}
uint256 scalar = _computeScalar(decimals);
return scalar == 1 ? amount : amount / _computeScalar(decimals);
}
function _computeScalar(uint8 decimals) internal returns (uint256 scalar) {
if (decimals > 18) {
revert DecimalsGreaterThan18(decimals);
}
scalar = _scalars[decimals];
if (scalar == 0) {
unchecked {
_scalars[decimals] = scalar = 10 ** (18 - decimals);
}
}
}
error DecimalsGreaterThan18(uint256 decimals);
}
// File: contracts/interfaces/IERC20.sol
/// @title Standard Interface for ERC20 tokens
// Sources:
// https://eips.ethereum.org/EIPS/eip-20
// https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM
// https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol
/*
* __ __ _______ ____
* / / / / / / ___// __ \
* / / / / / /\__ \/ / / /
* / /___/ /_/ /___/ / /_/ /
* /_____/\____//____/_____/
*/
pragma solidity ^0.8.28;
interface ERC20Interface {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
/**
* @dev OPTIONAL Returns the name of the token
*/
function name() external view returns (string memory);
/**
* @dev OPTIONAL Returns the symbol of the token
*/
function symbol() external view returns (string memory);
/**
* @dev OPTIONAL Returns the amount of decimals supported by the token
*/
function decimals() external view returns (uint8);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(
address owner,
address spender
) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
}
// File: contracts/interfaces/IAggregator.sol
/// @title IAggregator
/*
* __ __ _______ ____
* / / / / / / ___// __ \
* / / / / / /\__ \/ / / /
* / /___/ /_/ /___/ / /_/ /
* /_____/\____//____/_____/
*/
pragma solidity ^0.8.28;
interface IAggregator {
function decimals() external view returns (uint8);
function latestAnswer() external view returns (int256);
function latestTimestamp() external view returns (uint256);
function latestRound() external view returns (uint256);
function getAnswer(uint256 roundId) external view returns (int256);
function getTimestamp(uint256 roundId) external view returns (uint256);
event AnswerUpdated(
int256 indexed current,
uint256 indexed roundId,
uint256 updatedAt
);
event NewRound(
uint256 indexed roundId,
address indexed startedBy,
uint256 startedAt
);
}
// File: contracts/interfaces/ILUSD.sol
/// @title Basic interface for LUSD
/*
* __ __ _______ ____
* / / / / / / ___// __ \
* / / / / / /\__ \/ / / /
* / /___/ /_/ /___/ / /_/ /
* /_____/\____//____/_____/
*/
pragma solidity ^0.8.28;
interface ILUSD is ERC20Interface {
function oracle() external view returns (address);
function tokenZero() external view returns (address);
function liquidity() external view returns (address);
// Added rebase function
function rebase() external;
}
// File: contracts/interfaces/ILiquidity.sol
/// @title Basic liqudity interface
// Sources:
// https://docs.uniswap.org/contracts/v2/reference/smart-contracts/common-errors
/*
* __ __ _______ ____
* / / / / / / ___// __ \
* / / / / / /\__ \/ / / /
* / /___/ /_/ /___/ / /_/ /
* /_____/\____//____/_____/
*/
pragma solidity ^0.8.28;
interface ILiquidity {
function sync() external;
}
// File: contracts/libraries/PengMath.sol
/// @title Direct port of mulDiv functions from PRBMath by Paul Razvan Berg
// Sources:
// https://2π.com/21/muldiv/
// https://github.com/PaulRBerg/prb-math/tree/main/src/ud60x18
/*
* __ __ _______ ____
* / / / / / / ___// __ \
* / / / / / /\__ \/ / / /
* / /___/ /_/ /___/ / /_/ /
* /_____/\____//____/_____/
*/
pragma solidity ^0.8.22;
library PengMath {
/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;
/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;
/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;
error MulDiv18Overflow(uint256 x, uint256 y);
error MulDivOverflow(uint256 x, uint256 y, uint256 denominator);
function mul(uint256 x, uint256 y) internal pure returns(uint256 result) {
return _mulDiv18(x, y);
}
function div(uint256 x, uint256 y) internal pure returns(uint256 result) {
return _mulDiv(x, UNIT, y);
}
/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
/// x * y = MAX\_UINT256 * UNIT \\
/// (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function _mulDiv18(uint256 x, uint256 y) private pure returns (uint256 result) {
uint256 prod0;
uint256 prod1;
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
if (prod1 == 0) {
unchecked {
return prod0 / UNIT;
}
}
if (prod1 >= UNIT) {
revert MulDiv18Overflow(x, y);
}
uint256 remainder;
assembly ("memory-safe") {
remainder := mulmod(x, y, UNIT)
result :=
mul(
or(
div(sub(prod0, remainder), UNIT_LPOTD),
mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
),
UNIT_INVERSE
)
}
}
/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function _mulDiv(uint256 x, uint256 y, uint256 denominator) private pure returns (uint256 result) {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly ("memory-safe") {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
unchecked {
return prod0 / denominator;
}
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (prod1 >= denominator) {
revert MulDivOverflow(x, y, denominator);
}
////////////////////////////////////////////////////////////////////////////
// 512 by 256 division
////////////////////////////////////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using the mulmod Yul instruction.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512-bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
unchecked {
// Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
// because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
// For more detail, see https://cs.stackexchange.com/q/138556/92363.
uint256 lpotdod = denominator & (~denominator + 1);
uint256 flippedLpotdod;
assembly ("memory-safe") {
// Factor powers of two out of denominator.
denominator := div(denominator, lpotdod)
// Divide [prod1 prod0] by lpotdod.
prod0 := div(prod0, lpotdod)
// Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
// `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
// However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * flippedLpotdod;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
}
}
}
// File: contracts/Dispenser.sol
/// @title LUSD Dispenser
pragma solidity ^0.8.28;
contract LUSDDispenser is Normalizer, Ownable {
ILUSD public lusd;
function setLUSD(address addr) external onlyOwner {
lusd = ILUSD(addr);
}
function getTokenZeroDec() private view returns (uint8) {
uint8 decimals;
ERC20Interface tokenZero = ERC20Interface(lusd.tokenZero());
try tokenZero.decimals() returns (uint8 dec) {
decimals = dec;
} catch {
decimals = 18;
}
return decimals;
}
function _queryPrice() private returns (uint256) {
uint8 decimals;
IAggregator oracle = IAggregator(lusd.oracle());
try oracle.decimals() returns (uint8 dec) {
decimals = dec;
} catch {
decimals = 18;
}
uint256 price = uint256(oracle.latestAnswer());
return _normalize(price, decimals);
}
function convert(uint256 amount) external {
if (amount <= 0) {
revert RejectedZeroAmount();
}
ERC20Interface tokenZero = ERC20Interface(lusd.tokenZero());
address liquidityAddress = address(lusd.liquidity()); // Fetch liquidity address
tokenZero.transferFrom(msg.sender, liquidityAddress, amount);
uint256 nprice = _queryPrice();
uint256 namount = _normalize(amount, getTokenZeroDec());
uint256 ndohlAmount = PengMath.mul(namount, nprice);
uint256 dohlAmount = _denormalize(ndohlAmount, lusd.decimals());
if (dohlAmount > lusd.balanceOf(address(this))) {
revert InsufficientBalance();
}
lusd.transfer(msg.sender, dohlAmount);
// Moved rebase to the end
lusd.rebase();
}
error RejectedZeroAmount();
error InsufficientBalance();
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment