Last active
December 14, 2021 00:58
-
-
Save GeoffChurch/b81982bb5852894925d238a608efcf23 to your computer and use it in GitHub Desktop.
Implementation of call-by-name lambda calculus in Prolog using logic variables as lambda variables
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
% Implementation of call-by-name lambda calculus in Prolog using logic variables as lambda variables | |
% | |
% The grammar is: | |
% Term ::= Term-Term % abstraction: LHS is function body; RHS is parameter (Y-X instead of λX.Y) | |
% | Term+Term % application: LHS is function; RHS is argument (F+X instead of (F X)) | |
eval(Y-X, Y-X). % abstractions are left as-is | |
eval(F+X, Y) :- | |
copy_term(F,B), % copy before destructive unification of parameter in case F appears elsewhere | |
eval(B, Y0-X), % eval into what must be an abstraction and unify X with parameter | |
eval(Y0, Y). % fully eval resulting term so we aren't left with an application | |
%% example terms | |
s(X+Z+(Y+Z) - Z - Y - X). | |
k(X - _ - X). | |
i(X - X). | |
reverse(S + (K + (S + I)) + K) :- s(S), k(K), i(I). | |
if(P+A+B - B - A - P). | |
omega(Omega) :- self_apply(X+X - X, Omega). | |
y(FXXFXX - F) :- self_apply(F+(X+X) - X, FXXFXX). | |
self_apply(X, X+X). | |
% tests | |
test_sksk :- | |
s(S), | |
k(K), | |
eval(S+K+S+K, Res), | |
Res =@= K. | |
test_reverse :- | |
s(S), | |
k(K), | |
reverse(Rev), | |
eval(Rev+K+S+S+K, Res), | |
Res =@= K. | |
all_tests :- test_sksk, test_reverse. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment