-
-
Save GeorgeAdamon/e3d9714ef4a22f34143fd551e3e8bb82 to your computer and use it in GitHub Desktop.
Quaternion structure for HLSL
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#ifndef __QUATERNION_INCLUDED__ | |
#define __QUATERNION_INCLUDED__ | |
#define QUATERNION_IDENTITY float4(0, 0, 0, 1) | |
#ifndef PI | |
#define PI 3.14159265359f | |
#endif | |
// Quaternion multiplication | |
// http://mathworld.wolfram.com/Quaternion.html | |
float4 qmul(float4 q1, float4 q2) | |
{ | |
return float4( | |
q2.xyz * q1.w + q1.xyz * q2.w + cross(q1.xyz, q2.xyz), | |
q1.w * q2.w - dot(q1.xyz, q2.xyz) | |
); | |
} | |
// Vector rotation with a quaternion | |
// http://mathworld.wolfram.com/Quaternion.html | |
float3 rotate_vector(float3 v, float4 r) | |
{ | |
float4 r_c = r * float4(-1, -1, -1, 1); | |
return qmul(r, qmul(float4(v, 0), r_c)).xyz; | |
} | |
// A given angle of rotation about a given axis | |
float4 rotate_angle_axis(float angle, float3 axis) | |
{ | |
float sn = sin(angle * 0.5); | |
float cs = cos(angle * 0.5); | |
return float4(axis * sn, cs); | |
} | |
// https://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another | |
float4 from_to_rotation(float3 v1, float3 v2) | |
{ | |
float4 q; | |
float d = dot(v1, v2); | |
if (d < -0.999999) | |
{ | |
float3 right = float3(1, 0, 0); | |
float3 up = float3(0, 1, 0); | |
float3 tmp = cross(right, v1); | |
if (length(tmp) < 0.000001) | |
{ | |
tmp = cross(up, v1); | |
} | |
tmp = normalize(tmp); | |
q = rotate_angle_axis(PI, tmp); | |
} else if (d > 0.999999) { | |
q = QUATERNION_IDENTITY; | |
} else { | |
q.xyz = cross(v1, v2); | |
q.w = 1 + d; | |
q = normalize(q); | |
} | |
return q; | |
} | |
float4 q_conj(float4 q) | |
{ | |
return float4(-q.x, -q.y, -q.z, q.w); | |
} | |
// https://jp.mathworks.com/help/aeroblks/quaternioninverse.html | |
float4 q_inverse(float4 q) | |
{ | |
float4 conj = q_conj(q); | |
return conj / (q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w); | |
} | |
float4 q_diff(float4 q1, float4 q2) | |
{ | |
return q2 * q_inverse(q1); | |
} | |
float4 q_look_at(float3 forward, float3 up) | |
{ | |
float3 right = normalize(cross(forward, up)); | |
up = normalize(cross(forward, right)); | |
float m00 = right.x; | |
float m01 = right.y; | |
float m02 = right.z; | |
float m10 = up.x; | |
float m11 = up.y; | |
float m12 = up.z; | |
float m20 = forward.x; | |
float m21 = forward.y; | |
float m22 = forward.z; | |
float num8 = (m00 + m11) + m22; | |
float4 q = QUATERNION_IDENTITY; | |
if (num8 > 0.0) | |
{ | |
float num = sqrt(num8 + 1.0); | |
q.w = num * 0.5; | |
num = 0.5 / num; | |
q.x = (m12 - m21) * num; | |
q.y = (m20 - m02) * num; | |
q.z = (m01 - m10) * num; | |
return q; | |
} | |
if ((m00 >= m11) && (m00 >= m22)) | |
{ | |
float num7 = sqrt(((1.0 + m00) - m11) - m22); | |
float num4 = 0.5 / num7; | |
q.x = 0.5 * num7; | |
q.y = (m01 + m10) * num4; | |
q.z = (m02 + m20) * num4; | |
q.w = (m12 - m21) * num4; | |
return q; | |
} | |
if (m11 > m22) | |
{ | |
float num6 = sqrt(((1.0 + m11) - m00) - m22); | |
float num3 = 0.5 / num6; | |
q.x = (m10 + m01) * num3; | |
q.y = 0.5 * num6; | |
q.z = (m21 + m12) * num3; | |
q.w = (m20 - m02) * num3; | |
return q; | |
} | |
float num5 = sqrt(((1.0 + m22) - m00) - m11); | |
float num2 = 0.5 / num5; | |
q.x = (m20 + m02) * num2; | |
q.y = (m21 + m12) * num2; | |
q.z = 0.5 * num5; | |
q.w = (m01 - m10) * num2; | |
return q; | |
} | |
float4 q_slerp(in float4 a, in float4 b, float t) | |
{ | |
// if either input is zero, return the other. | |
if (length(a) == 0.0) | |
{ | |
if (length(b) == 0.0) | |
{ | |
return QUATERNION_IDENTITY; | |
} | |
return b; | |
} | |
else if (length(b) == 0.0) | |
{ | |
return a; | |
} | |
float cosHalfAngle = a.w * b.w + dot(a.xyz, b.xyz); | |
if (cosHalfAngle >= 1.0 || cosHalfAngle <= -1.0) | |
{ | |
return a; | |
} | |
else if (cosHalfAngle < 0.0) | |
{ | |
b.xyz = -b.xyz; | |
b.w = -b.w; | |
cosHalfAngle = -cosHalfAngle; | |
} | |
float blendA; | |
float blendB; | |
if (cosHalfAngle < 0.99) | |
{ | |
// do proper slerp for big angles | |
float halfAngle = acos(cosHalfAngle); | |
float sinHalfAngle = sin(halfAngle); | |
float oneOverSinHalfAngle = 1.0 / sinHalfAngle; | |
blendA = sin(halfAngle * (1.0 - t)) * oneOverSinHalfAngle; | |
blendB = sin(halfAngle * t) * oneOverSinHalfAngle; | |
} | |
else | |
{ | |
// do lerp if angle is really small. | |
blendA = 1.0 - t; | |
blendB = t; | |
} | |
float4 result = float4(blendA * a.xyz + blendB * b.xyz, blendA * a.w + blendB * b.w); | |
if (length(result) > 0.0) | |
{ | |
return normalize(result); | |
} | |
return QUATERNION_IDENTITY; | |
} | |
float4x4 quaternion_to_matrix(float4 quat) | |
{ | |
float4x4 m = float4x4(float4(0, 0, 0, 0), float4(0, 0, 0, 0), float4(0, 0, 0, 0), float4(0, 0, 0, 0)); | |
float x = quat.x, y = quat.y, z = quat.z, w = quat.w; | |
float x2 = x + x, y2 = y + y, z2 = z + z; | |
float xx = x * x2, xy = x * y2, xz = x * z2; | |
float yy = y * y2, yz = y * z2, zz = z * z2; | |
float wx = w * x2, wy = w * y2, wz = w * z2; | |
m[0][0] = 1.0 - (yy + zz); | |
m[0][1] = xy - wz; | |
m[0][2] = xz + wy; | |
m[1][0] = xy + wz; | |
m[1][1] = 1.0 - (xx + zz); | |
m[1][2] = yz - wx; | |
m[2][0] = xz - wy; | |
m[2][1] = yz + wx; | |
m[2][2] = 1.0 - (xx + yy); | |
m[3][3] = 1.0; | |
return m; | |
} | |
#endif // __QUATERNION_INCLUDED__ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment