Skip to content

Instantly share code, notes, and snippets.

@Gerst20051
Forked from miloharper/short_version.py
Created March 28, 2019 02:20
Show Gist options
  • Save Gerst20051/003c6e3e4f6e7cc3bb56f62374899a45 to your computer and use it in GitHub Desktop.
Save Gerst20051/003c6e3e4f6e7cc3bb56f62374899a45 to your computer and use it in GitHub Desktop.
A neural network in 9 lines of Python code.
from numpy import exp, array, random, dot
training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
training_set_outputs = array([[0, 1, 1, 0]]).T
random.seed(1)
synaptic_weights = 2 * random.random((3, 1)) - 1
for iteration in xrange(10000):
output = 1 / (1 + exp(-(dot(training_set_inputs, synaptic_weights))))
synaptic_weights += dot(training_set_inputs.T, (training_set_outputs - output) * output * (1 - output))
print 1 / (1 + exp(-(dot(array([1, 0, 0]), synaptic_weights))))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment