Created
December 23, 2020 02:59
-
-
Save GoingMyWay/45103ad1c4d3d71d5c90e983fc7a2281 to your computer and use it in GitHub Desktop.
Median quantile finder
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch as th | |
import torch.nn as nn | |
import matplotlib.pyplot as plt | |
from torch.optim import Adam | |
arr = np.arange(100) | |
class QR(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.x = nn.Parameter(data=th.from_numpy(np.array([1], dtype=np.float32))) | |
qr = QR() | |
opt = Adam(params=qr.parameters(), lr=0.1) | |
estimated_median, real_median, losses = [], [], [] | |
for i in range(2000): | |
loss = th.mean(th.abs(th.from_numpy(arr)-qr.x)) | |
opt.zero_grad() | |
loss.backward() | |
opt.step() | |
losses.append(loss.item()) | |
estimated_median.append(qr.x.clone().detach()) | |
real_median.append(np.median(arr)) | |
print(f"step: {i}, loss:{loss.item()}, estimated median: {qr.x.clone().detach()}, real meadian: {np.median(arr)}") | |
plt.plot(range(len(estimated_median)), estimated_median, label='estimated_median') | |
plt.plot(range(len(estimated_median)), real_median, label='median') | |
plt.plot(range(len(estimated_median)), losses, label='loss') | |
plt.legend() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment