Last active
November 11, 2021 14:07
-
-
Save GoingMyWay/93a9d7b0393583d9309f1512234f18b1 to your computer and use it in GitHub Desktop.
Get ICLR paper list including titile, url, scores, avg_score and keywords
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import multiprocessing | |
import tqdm | |
import openreview | |
import pandas as pd | |
def worker(reviews): | |
client = openreview.Client(baseurl='https://api.openreview.net', username='', password='') | |
papers = {'title': [], 'link': [], 'rating': [], 'avg_rating': [], 'keywords': [], 'n_comments': []} | |
for review in tqdm.tqdm(reviews): | |
_id = review.id | |
_title = review.content['title'] | |
_comments = client.get_notes(forum=_id) | |
_keywords = review.content['keywords'] | |
_ratings = [] | |
for c in _comments: | |
if 'rating' in c.content.keys(): | |
_ratings.append(int(c.content['rating'][0])) | |
papers['title'].append(_title) | |
papers['link'].append(f'https://openreview.net/forum?id={_id}') | |
papers['rating'].append(_ratings) | |
papers['avg_rating'].append(sum(_ratings)/len(_ratings)) | |
papers['keywords'].append([v.lower() for v in _keywords]) | |
papers['n_comments'].append(len(_comments)) | |
return papers | |
def main(args): | |
client = openreview.Client(baseurl='https://api.openreview.net', username='', password='') | |
blind_submissions_iterator = openreview.tools.iterget_notes(client, invitation=args.conf) | |
all_reviews = [review for review in blind_submissions_iterator] | |
chunk = len(all_reviews) // args.n_runner | |
p = multiprocessing.Pool(processes=args.n_runner) | |
data = p.map(worker, [all_reviews[i*chunk: (i+1)*chunk if i != args.n_runner -1 else (args.n_runner+1)*chunk] for i in range(args.n_runner)]) | |
print(len(data)) | |
p.close() | |
p.join() | |
all_data = {} | |
print('saving data....') | |
for d in tqdm.tqdm(data): | |
for k, v in d.items(): | |
if k not in all_data: | |
all_data[k] = v | |
else: | |
all_data[k].extend(v) | |
df = pd.DataFrame.from_dict(all_data) | |
df.to_csv('iclr_2021_list.csv') | |
if __name__ == '__main__': | |
argparser = argparse.ArgumentParser(description='ICLR data parser') | |
argparser.add_argument('--conf', type=str, default='ICLR.cc/2021/Conference/-/Blind_Submission', help='conference link') | |
argparser.add_argument('--n-runner', type=int, default=32, help='number of threads') | |
parser = argparser.parse_args() | |
main(parser) |
Process the data and then use the download tools to download
import pandas as pd
df = pd.read_csv('neurips_2021_list.csv')
key_words = ['reinforcement', 'policy', 'actor-critic', 'Q-learning', 'q-learning', 'policy', 'multi-agent', 'multiagent']
results = [] # id, title, url
count = 0
for row in df.itertuples():
keys = ' '.join(eval(row.keywords))
flag = False
for w in key_words:
if w in keys:
flag = True
break
if flag:
results.append(f'{count},{row.title},{row.link}')
count += 1
with open('neurips21_list.csv', 'w') as f:
for line in results:
f.write(line+'\n')
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Get all Blind_Submission, including paper id, title, scores, link and keywords.