Created
January 4, 2017 13:31
-
-
Save Gotoryoo/64952d8d783655147ad4d8798f9df572 to your computer and use it in GitHub Desktop.
このプログラムは、上から下まで撮影した写真の上下の写真のずれを取得し、グラフ化するプログラムである。
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Wed Aug 17 15:27:51 2016 | |
@author: ryousuke | |
""" | |
import numpy as np | |
import cv2 | |
from array import array | |
#import re | |
import pandas as pd | |
from os.path import join, relpath | |
from glob import glob | |
import itertools | |
import ROOT | |
import math | |
import mytool | |
ROOT.std.__file__ = 'dummy_for_old_pyastro' | |
ROOT.gROOT.Reset() | |
path = "C:\\Users\\GTR\\Documents\\lab_log\\log\\H28_11\\20161117\\beam_info\\GTR_test\\img\\" | |
#img_lob = [] | |
flag = 0 | |
i = 0 | |
base_u = 71 | |
base_d = 83 | |
fin = 157 | |
myarea = 20 | |
num = array('d') | |
b_x = array('d') | |
b_y = array('d') | |
b_xsum = array('d') | |
b_ysum = array('d') | |
zero = 0 | |
num.append(float(zero)) | |
b_x.append(float(zero)) | |
b_y.append(float(zero)) | |
b_xsum.append(float(zero)) | |
b_ysum.append(float(zero)) | |
while i < fin: | |
if flag == 1: | |
i = base_d | |
print i | |
if i == base_u: | |
flag = 1 | |
print i | |
#上側の写真を読み取る場所 | |
if i < 10: | |
img_u = cv2.imread(path + "mod64pl200{0}.png".format(i),0); | |
elif i < 100: | |
img_u = cv2.imread(path + "mod64pl20{0}.png".format(i),0); | |
else: | |
img_u = cv2.imread(path + "mod64pl2{0}.png".format(i),0); | |
#下側の写真を読み取る場所 | |
s = i + 1 | |
if s == base_u + 1: | |
s = base_d | |
if s < 10: | |
img_d = cv2.imread(path + "mod64pl200{0}.png".format(s),0); | |
elif s < 100: | |
img_d = cv2.imread(path + "mod64pl20{0}.png".format(s),0); | |
else: | |
img_d = cv2.imread(path + "mod64pl2{0}.png".format(s),0); | |
if i == base_d: | |
flag = 0 | |
num.append(float(s)) | |
# img_lob.append(i) | |
#上側の画像から輝度値のまとまりを読み取る。 | |
# img_u = cv2.imread(path + "mod64pl2000.png",0); | |
cont_u = mytool.funcContrust(img_u) | |
bin_u = mytool.funcThreshold(cont_u,31,60,255) | |
# con_u = mytool.mycontour(bin_u,myarea) | |
contours_u = cv2.findContours(bin_u, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
#下側の画像から輝度値のまとまりを読み取る。 | |
# img_d = cv2.imread(path + "mod64pl2000.png",0); | |
cont_d = mytool.funcContrust(img_d) | |
bin_d = mytool.funcThreshold(cont_d,31,60,255) | |
# con_d = mytool.mycontour(bin_d,myarea) | |
contours_d = cv2.findContours(bin_d, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
mom_u = [] | |
mom_d = [] | |
for cu in contours_u[0]: | |
mom = {} | |
M = cv2.moments(cu) | |
if M['m00'] != 0: | |
cx = int(M['m10']/M['m00']) | |
cy = int(M['m01']/M['m00']) | |
mom['cx'] = int(cx) | |
mom['cy'] = int(cy) | |
mom_u.append(mom) | |
else: | |
cx = 0 | |
cy = 0 | |
for cd in contours_d[0]: | |
mom = {} | |
M = cv2.moments(cd) | |
if M['m00'] != 0: | |
cx = int(M['m10']/M['m00']) | |
cy = int(M['m01']/M['m00']) | |
mom['cx'] = int(cx) | |
mom['cy'] = int(cy) | |
mom_d.append(mom) | |
else: | |
cx = 0 | |
cy = 0 | |
c1 = ROOT.TCanvas('c1','Example with Formula',200,10,700,700) | |
h2dydx = ROOT.TH2D("h2dydx","img:{0} to img:{1};x[pix];y[pix]".format(i,s),100, -50, 50, 100, -50, 50) | |
for b_u,b_d in itertools.product(mom_u,mom_u): | |
# print(b_u,b_d) | |
#もしかしたら、画像の中心を(0,0)になるようにしなければならないかも | |
#その場合は、絶対値(abs)を使用する必要あり | |
r = math.sqrt((b_u['cx'] - b_d['cx'])**2 + (b_u['cy'] - b_d['cy'])**2) | |
if r > 100: | |
continue | |
dx = b_u['cx'] - b_d['cx'] | |
dy = b_u['cy'] - b_d['cy'] | |
h2dydx.Fill(dx,dy) | |
print 'finish' | |
x = h2dydx.GetMean(1) | |
y = h2dydx.GetMean(2) | |
sum_x = b_xsum[-1] + x | |
sum_y = b_ysum[-1] + y | |
b_x.append(float(x)) | |
b_y.append(float(y)) | |
b_xsum.append(float(sum_x)) | |
b_ysum.append(float(sum_y)) | |
h2dydx.Draw('colz') | |
c1.Print(path + 'Beampattern:img{0}_to_img{1}.png'.format(i,s)) | |
i += 1 | |
#各パターンマッチのヒストグラムが作成できたら、その統計情報を使用して各画像のずれをグラフにする。 | |
n = len(num) | |
#n_flo = float(n) | |
gr1 = ROOT.TGraph(n,num,b_x) | |
gr1.GetXaxis().SetLimits(0,fin + 10) | |
gr1.SetMaximum(10) | |
gr1.SetMinimum(-10) | |
gr1.SetTitle('bx') | |
gr1.SetMarkerStyle(7) | |
gr1.SetMarkerColor(1) | |
gr1.Draw('AP') | |
c1.Print(path + 'rusult:bx.png') | |
gr2 = ROOT.TGraph(n,num,b_y) | |
gr2.GetXaxis().SetLimits(0,fin + 10) | |
gr2.SetMaximum(10) | |
gr2.SetMinimum(-10) | |
gr2.SetTitle('by') | |
gr2.SetMarkerStyle(7) | |
gr2.SetMarkerColor(8) | |
gr2.Draw('AP') | |
c1.Print(path + 'rusult:by.png') | |
gr3 = ROOT.TGraph(n,num,b_xsum) | |
gr3.GetXaxis().SetLimits(0,fin + 10) | |
gr3.SetMaximum(50) | |
gr3.SetMinimum(-70) | |
gr3.SetTitle('bx_sum') | |
gr3.SetMarkerStyle(7) | |
gr3.SetMarkerColor(1) | |
gr3.Draw('AP') | |
c1.Print(path + 'rusult:bx_sum.png') | |
gr4 = ROOT.TGraph(n,num,b_ysum) | |
gr4.GetXaxis().SetLimits(0,fin + 10) | |
gr4.SetMaximum(50) | |
gr4.SetMinimum(-70) | |
gr4.SetTitle('by_sum') | |
gr4.SetMarkerStyle(7) | |
gr4.SetMarkerColor(8) | |
gr4.Draw('AP') | |
c1.Print(path + 'rusult:by_sum.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment