Created
January 4, 2017 13:33
-
-
Save Gotoryoo/da432d1b44882808e5354681756d51f9 to your computer and use it in GitHub Desktop.
表面から8枚の画像を積層し、beamパターンを取得した後に、そのbeamパターンと各画像のずれを集計するプログラムである。
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Created on Wed Aug 17 15:27:51 2016 | |
@author: ryousuke | |
""" | |
import numpy as np | |
import cv2 | |
from array import array | |
#import re | |
import pandas as pd | |
from os.path import join, relpath | |
from glob import glob | |
import itertools | |
import ROOT | |
import math | |
import mytool | |
ROOT.std.__file__ = 'dummy_for_old_pyastro' | |
ROOT.gROOT.Reset() | |
path = "C:\\Users\\GTR\\Documents\\lab_log\\log\\H28_11\\20161117\\beam_info\\GTR_test\\img\\" | |
#img_lob = [] | |
addcount = 8 | |
flag = 0 | |
i = 0 | |
base_u = 71 | |
base_d = 83 | |
fin = 157 | |
num = array('d') | |
b_x = array('d') | |
b_y = array('d') | |
b_xsum = array('d') | |
b_ysum = array('d') | |
zero = 0 | |
num.append(float(zero)) | |
b_x.append(float(zero)) | |
b_y.append(float(zero)) | |
b_xsum.append(float(zero)) | |
b_ysum.append(float(zero)) | |
img = cv2.imread(path + "mod64pl2000.png",0); | |
beam = np.zeros_like(img) | |
while i < addcount: | |
img_b = cv2.imread(path + "mod64pl200{0}.png".format(i),0); | |
# cv2.imshow('img_b',img_b) | |
cont_b = mytool.funcContrust(img_b) | |
bin_b = mytool.funcThreshold(cont_b,31,60,1) | |
# cv2.imshow('bin_b',bin_b * 255) | |
beam = cv2.add(beam,bin_b) | |
# cv2.imshow('beam',beam * 255) | |
i += 1 | |
threshold = 4 | |
max_bri = 255 | |
ret,thre = cv2.threshold(beam, threshold, max_bri, cv2.THRESH_BINARY) | |
contours_b = cv2.findContours(thre, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
#cv2.imshow('thre',thre) | |
#cv2.waitKey(0) | |
#cv2.destroyAllWindows() | |
while i < fin: | |
if i < addcount: | |
i = addcount | |
else: | |
if flag == 1: | |
i = base_d | |
print i | |
if i == base_u: | |
flag = 1 | |
print i | |
#上側の写真を読み取る場所 | |
if i < 10: | |
img_pattern = cv2.imread(path + "mod64pl200{0}.png".format(i),0); | |
elif i < 100: | |
img_pattern = cv2.imread(path + "mod64pl20{0}.png".format(i),0); | |
else: | |
img_pattern = cv2.imread(path + "mod64pl2{0}.png".format(i),0); | |
if i == base_d: | |
flag = 0 | |
num.append(float(i)) | |
#下側の画像から輝度値のまとまりを読み取る。 | |
cont_p = mytool.funcContrust(img_pattern) | |
bin_p = mytool.funcThreshold(cont_p,31,60,255) | |
contours_p = cv2.findContours(bin_p, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) | |
mom_b = [] | |
mom_p = [] | |
for cb in contours_b[0]: | |
mom = {} | |
M = cv2.moments(cb) | |
if M['m00'] != 0: | |
cx = int(M['m10']/M['m00']) | |
cy = int(M['m01']/M['m00']) | |
mom['cx'] = int(cx) | |
mom['cy'] = int(cy) | |
mom_b.append(mom) | |
else: | |
cx = 0 | |
cy = 0 | |
for cp in contours_p[0]: | |
mom = {} | |
M = cv2.moments(cp) | |
if M['m00'] != 0: | |
cx = int(M['m10']/M['m00']) | |
cy = int(M['m01']/M['m00']) | |
mom['cx'] = int(cx) | |
mom['cy'] = int(cy) | |
mom_p.append(mom) | |
else: | |
cx = 0 | |
cy = 0 | |
c1 = ROOT.TCanvas('c1','Example with Formula',200,10,700,700) | |
h2dydx = ROOT.TH2D("h2dydx","beam to img:{0};x[pix];y[pix]".format(i),100, -50, 50, 100, -50, 50) | |
for b_b,b_p in itertools.product(mom_b,mom_p): | |
# print(b_u,b_d) | |
#もしかしたら、画像の中心を(0,0)になるようにしなければならないかも | |
#その場合は、絶対値(abs)を使用する必要あり | |
r = math.sqrt((b_b['cx'] - b_p['cx'])**2 + (b_b['cy'] - b_p['cy'])**2) | |
if r > 100: | |
continue | |
dx = b_b['cx'] - b_p['cx'] | |
dy = b_b['cy'] - b_p['cy'] | |
h2dydx.Fill(dx,dy) | |
print 'finish' | |
x = h2dydx.GetMean(1) | |
y = h2dydx.GetMean(2) | |
sum_x = b_xsum[-1] + x | |
sum_y = b_ysum[-1] + y | |
b_x.append(float(x)) | |
b_y.append(float(y)) | |
b_xsum.append(float(sum_x)) | |
b_ysum.append(float(sum_y)) | |
h2dydx.Draw('colz') | |
c1.Print(path + 'Beampattern_3:beam_to_img{0}.png'.format(i)) | |
i += 1 | |
#各パターンマッチのヒストグラムが作成できたら、その統計情報を使用して各画像のずれをグラフにする。 | |
n = len(num) | |
#n_flo = float(n) | |
gr1 = ROOT.TGraph(n,num,b_x) | |
gr1.GetXaxis().SetLimits(0,fin + 10) | |
gr1.SetMaximum(20) | |
gr1.SetMinimum(-20) | |
gr1.SetTitle('bx') | |
gr1.SetMarkerStyle(7) | |
gr1.SetMarkerColor(1) | |
gr1.Draw('AP') | |
c1.Print(path + 'rusult_3:bx.png') | |
gr2 = ROOT.TGraph(n,num,b_y) | |
gr2.GetXaxis().SetLimits(0,fin + 10) | |
gr2.SetMaximum(20) | |
gr2.SetMinimum(-20) | |
gr2.SetTitle('by') | |
gr2.SetMarkerStyle(7) | |
gr2.SetMarkerColor(8) | |
gr2.Draw('AP') | |
c1.Print(path + 'rusult_3:by.png') | |
gr3 = ROOT.TGraph(n,num,b_xsum) | |
gr3.GetXaxis().SetLimits(0,fin + 10) | |
gr3.SetMaximum(300) | |
gr3.SetMinimum(-300) | |
gr3.SetTitle('bx_sum') | |
gr3.SetMarkerStyle(7) | |
gr3.SetMarkerColor(1) | |
gr3.Draw('AP') | |
c1.Print(path + 'rusult_3:bx_sum.png') | |
gr4 = ROOT.TGraph(n,num,b_ysum) | |
gr4.GetXaxis().SetLimits(0,fin + 10) | |
gr4.SetMaximum(300) | |
gr4.SetMinimum(-300) | |
gr4.SetTitle('by_sum') | |
gr4.SetMarkerStyle(7) | |
gr4.SetMarkerColor(8) | |
gr4.Draw('AP') | |
c1.Print(path + 'rusult_3:by_sum.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment