Created
November 3, 2015 13:18
-
-
Save GrantTrebbin/949600ad8596705bdb33 to your computer and use it in GitHub Desktop.
A quick demonstration of the magnetic field of a circular current loop
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import scipy.special as sp | |
a = 1.55 | |
current = 1 | |
mu = 4 * np.pi / 10000000 | |
# equal to sqrt(4ra(z^2 + (a+r)^2)^(-1)) | |
def k_val (R, Z): | |
denominator = np.square(Z) + np.square(np.add(a, R)) | |
K = np.sqrt(np.divide(4 * R * a, denominator)) | |
return K | |
# equal to sqrt(z^2 + (a+r)^2) | |
def gamma_val (R, Z): | |
gamma = np.sqrt(np.square(Z) + np.square(np.add(a, R))) | |
return gamma | |
# equal to sqrt(z^2 + (r-a)^2) | |
def epsilon_val (R, Z): | |
epsilon = np.square(Z) + np.square(np.subtract(a, R)) | |
return epsilon | |
R, Z = np.meshgrid(np.arange(0.1, 3, 0.1), np.arange(-3, 3, 0.1)) | |
K = k_val(R, Z) | |
gamma = gamma_val (R, Z) | |
epsilon = epsilon_val (R, Z) | |
E1 = sp.ellipk(np.square(K)) | |
E2 = sp.ellipe(np.square(K)) | |
Ua = np.divide((mu * current) / (2 * np.pi), gamma) | |
Va = np.multiply(np.divide(np.divide((mu * current) / (2 * np.pi), gamma), R), Z) | |
U = np.multiply( | |
Ua, | |
np.add( | |
np.multiply( | |
np.divide( | |
(np.square(a) - np.square(Z) - np.square(R)), | |
epsilon), | |
E2), | |
E1)) | |
V = np.multiply( | |
Va, | |
np.subtract( | |
np.multiply( | |
np.divide( | |
(np.square(a) + np.square(Z) + np.square(R)), | |
epsilon), | |
E2), | |
E1)) | |
plt.figure(1) | |
ax =plt.gca() | |
mag = np.sqrt(V**2 + U**2) | |
Us = np.divide(U, mag) | |
Vs = np.divide(V, mag) | |
ax.quiver(R, Z, Vs, Us, angles='xy', scale_units='xy', scale=10 ) | |
ax.set_xlim([0,3]) | |
ax.set_ylim([-3,3]) | |
plt.draw() | |
plt.figure(2) | |
ax = plt.gca() | |
ax.plot (Z[:,10], U[:,10]) | |
ax.plot (Z[:,20], U[:,20]) | |
ax.set_xlim([-3,3]) | |
ax.set_ylim([-0.0000003,0.0000003]) | |
plt.draw() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment