Created
November 28, 2015 10:31
-
-
Save GrantTrebbin/e9ca33585c36a6174e32 to your computer and use it in GitHub Desktop.
In plane magnetic field of a current loop of radius a, distance r from the loop axis. Field will be perpendicular to the plane.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
import scipy.special as sp | |
a = 1.55 | |
current = 1 | |
mu = 4 * np.pi / 10000000 | |
# equal to sqrt(4ra(z^2 + (a+r)^2)^(-1)) | |
def k_val (R, Z): | |
denominator = np.square(Z) + np.square(np.add(a, R)) | |
K = np.sqrt(np.divide(4 * R * a, denominator)) | |
return K | |
# equal to sqrt(z^2 + (a+r)^2) | |
def gamma_val (R, Z): | |
gamma = np.sqrt(np.square(Z) + np.square(np.add(a, R))) | |
return gamma | |
# equal to z^2 + (r-a)^2 | |
def epsilon_val (R, Z): | |
epsilon = np.square(Z) + np.square(np.subtract(a, R)) | |
return epsilon | |
# equal to a^2 - z^2 - r^2 | |
def delta_val (R, Z): | |
delta = np.square(a) - np.square(Z) - np.square(R) | |
return delta | |
R = np.arange(0.0, 5, 0.01) | |
K = k_val(R, 0) | |
gamma = gamma_val (R, 0) | |
epsilon = epsilon_val (R, 0) | |
delta = delta_val (R, 0) | |
E1 = sp.ellipk(np.square(K)) | |
E2 = sp.ellipe(np.square(K)) | |
Bza = np.divide((mu * current) / (2 * np.pi), gamma) | |
Bzb = np.multiply(np.divide(delta, epsilon), E2) + E1 | |
Bz = Bza * Bzb | |
plt.figure(1) | |
ax = plt.gca() | |
ax.plot (R, Bz) | |
ax.set_ylim([-0.000003,0.000003]) | |
plt.draw() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment