Last active
June 6, 2025 10:52
-
-
Save Gro-Tsen/57376171845aff999f17e2214ada2b94 to your computer and use it in GitHub Desktop.
Sage code to plot a conformal map
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Plot the conformal mapping taking the unit disk to the doubly ideal | |
# triangle having vertices 0, 1, i in the Poincaré disk model (with 1, | |
# i, -i being mapped to these three vertices). See | |
# https://mathoverflow.net/questions/495782/riemann-mapping-to-a-specific-curvilinear-triangle/495809#495809 | |
# for details. | |
k = 2 * gamma(3/4)^2 / gamma(1/4)^2 | |
kN = N(k) | |
var('z') | |
s(z) = k*sqrt(z) * hypergeometric([3/4,3/4],[3/2],z) / hypergeometric([1/4,1/4],[1/2],z) | |
ss(z) = s(1-I-2/(z+I)) | |
# A memoized version of the above function, for efficiency's sake: | |
ss_tab = {} | |
def memoize_ss(z): | |
z = N(z) | |
if z in ss_tab: | |
return ss_tab[z] | |
w = N(1-I-2/(z+I)) | |
ss_tab[z] = N(kN*sqrt(w) * hypergeometric([3/4,3/4],[3/2],w) / hypergeometric([1/4,1/4],[1/2],w)) | |
return ss_tab[z] | |
def plothelp(rad, ang): | |
return memoize_ss(rad*exp(2*I*pi*ang)) | |
def plothelp_x(rad, ang): | |
return real(plothelp(rad,ang)) | |
def plothelp_y(rad, ang): | |
return imag(plothelp(rad,ang)) | |
circplots = [] | |
for i in range(20): | |
print("computing circular plot at radius %d/20 (%d values computed so far)"%(i,len(ss_tab))) | |
circplots.append(parametric_plot([lambda t: plothelp_x(i/20, t), lambda t: plothelp_y(i/20, t)], (0,1))) | |
radplots = [] | |
for i in range(48): | |
print("computing radial plot at angle %d/48 (%d values computed so far)"%(i,len(ss_tab))) | |
radplots.append(parametric_plot([lambda t: plothelp_x(t, i/48), lambda t: plothelp_y(t, i/48)], (0,19/20))) | |
redplot = parametric_plot([lambda t: plothelp_x(99/100, t), lambda t: plothelp_y(99/100, t)], (0,1), color="red", plot_points=960) | |
pinkplot = parametric_plot([lambda t: plothelp_x(999/1000, t), lambda t: plothelp_y(999/1000, t)], (0,1), color="magenta", plot_points=3840) | |
fullplot = sum(circplots + radplots + [redplot, pinkplot]) | |
fullplot.save(filename="plot.png", dpi=300, aspect_ratio=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment