Created
September 30, 2024 09:55
-
-
Save Gro-Tsen/5d9b67bba2f6b717dab1b91be65d2c7a to your computer and use it in GitHub Desktop.
Compute curvature of the Taub-NUT metric
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
rhosq = r^2 + nut^2 | |
Deltasq = r^2 - 2 M r - nut^2 | |
(* Covariant metric tensor (metric on vectors) *) | |
g = Simplify[{{-Deltasq/rhosq,0,0,-2 nut Cos[theta] Deltasq/rhosq},{0,rhosq/Deltasq,0,0},{0,0,rhosq,0},{-2 nut Cos[theta] Deltasq/rhosq,0,0,rhosq Sin[theta]^2 - 4 nut^2 Cos[theta]^2 Deltasq/rhosq}}] | |
(* Contravariant metric tensor (metric on covectors) *) | |
ginv = Simplify[Inverse[g]] | |
coords = {t,r,theta,phi} | |
(* First kind Christoffel symbols [i j, k] *) | |
chris1 = Simplify[Table[(-D[g[[i,j]],coords[[k]]]+D[g[[i,k]],coords[[j]]]+D[g[[j,k]],coords[[i]]])/2,{i,1,4},{j,1,4},{k,1,4}]] | |
(* Second kind Christoffel symbols {l \\ i k} *) | |
chris2 = Simplify[Table[Sum[chris1[[i,j,k]] ginv[[k,l]],{k,1,4}],{l,1,4},{i,1,4},{j,1,4}]] | |
(* Riemann tensor R^l_ijk *) | |
riemann = Simplify[Table[D[chris2[[l,i,k]],coords[[j]]]-D[chris2[[l,i,j]],coords[[k]]]+Sum[chris2[[m,i,k]] chris2[[l,m,j]],{m,1,4}]-Sum[chris2[[m,i,j]] chris2[[l,m,k]],{m,1,4}],{l,1,4},{i,1,4},{j,1,4},{k,1,4}]] | |
(* Ricci tensor *) | |
(* Check: this should be zero: *) | |
ricci = Simplify[Table[Sum[riemann[[l,i,j,l]],{l,1,4}],{i,1,4},{j,1,4}]] | |
(* Fully covariant metric tensor R_lijk *) | |
riemanncov = Simplify[Table[Sum[riemann[[m,i,j,k]] g[[l,m]],{m,1,4}],{l,1,4},{i,1,4},{j,1,4},{k,1,4}]] | |
(* Kretschmann curvature scalar *) | |
kretschmann = Simplify[Sum[riemanncov[[l1,i1,j1,k1]] riemanncov[[l2,i2,j2,k2]] ginv[[l1,l2]] ginv[[i1,i2]] ginv[[j1,j2]] ginv[[k1,k2]], {l1,1,4},{l2,1,4},{i1,1,4},{i2,1,4},{j1,1,4},{j2,1,4},{k1,1,4},{k2,1,4}]] | |
Series[kretschmann, {r,Infinity,6}] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
See https://bsky.app/profile/gro-tsen.bsky.social/post/3l5eh53ye6z2f for context for this computation.