Created
June 19, 2018 20:13
-
-
Save GuilhermeGSousa/81ba4785664470ee0af9860af56c1326 to your computer and use it in GitHub Desktop.
Implementention of a DQN to solve the Cartpole environment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import random | |
import gym | |
import math | |
import numpy as np | |
from collections import deque | |
from keras.models import Sequential | |
from keras.layers import Dense | |
from keras.optimizers import Adam | |
class DQN(): | |
def __init__(self, env, max_env_steps=None, gamma=0.99, | |
epsilon=1.0, epsilon_min=0.01, epsilon_log_decay=0.8, | |
alpha=0.05, alpha_decay=0.01, batch_size=128, quiet=False): | |
self.env = env | |
self.memory = [] | |
self.gamma = gamma | |
self.epsilon = epsilon | |
self.epsilon_min = epsilon_min | |
self.epsilon_decay = epsilon_log_decay | |
self.alpha = alpha | |
self.alpha_decay = alpha_decay | |
self.batch_size = batch_size | |
self.quiet = quiet | |
self.model = Sequential() | |
self.model.add(Dense(24, input_dim=4, activation='tanh')) | |
self.model.add(Dense(48, activation='tanh')) | |
self.model.add(Dense(2, activation='linear')) | |
self.model.compile(loss='mse', optimizer=Adam(lr=self.alpha, decay=self.alpha_decay)) | |
def remember(self, state, action, reward, next_state, done): | |
self.memory.append((state, action, reward, next_state, done)) | |
def act(self, state, step = None): | |
if step is not None: | |
epsilon = max(self.epsilon_min, min(self.epsilon, 1.0 - math.log10((step + 1) * self.epsilon_decay))) | |
return self.env.action_space.sample() if (np.random.random() <= epsilon) else np.argmax(self.model.predict(state)) | |
else: | |
return np.argmax(self.model.predict(state)) | |
def replay(self): | |
batch_size = self.batch_size | |
x_batch, y_batch = [], [] | |
np.random.shuffle(self.memory) | |
batches = [] | |
for i in range(0, len(self.memory), self.batch_size): | |
batches.append(self.memory[i:i + self.batch_size]) | |
for b in batches: | |
for state, action, reward, next_state, done in b: | |
y_target = self.model.predict(state) | |
y_target[0][action] = reward if done else reward + self.gamma * np.max(self.model.predict(next_state)[0]) | |
x_batch.append(state[0]) | |
y_batch.append(y_target[0]) | |
self.model.fit(np.array(x_batch), np.array(y_batch), batch_size=len(x_batch), verbose=0) | |
self.memory = [] | |
if __name__ == '__main__': | |
env = gym.make('CartPole-v0') | |
env.reset() | |
MAX_STEPS = 2000 | |
STEP_TIME = 0.03 | |
N_EP = 5000 | |
COMBO_WIN_EP = 100 | |
agent = DQN(env) | |
scores = [] | |
good_tries_combo = 0 | |
for e in range(N_EP): | |
state = np.reshape(env.reset(), [1, 4]) | |
score = 0 | |
for t in range(MAX_STEPS): | |
action = agent.act(state, e) | |
next_state, reward, done, _ = env.step(action) | |
next_state = np.reshape(next_state, [1, 4]) | |
agent.remember(state, action, reward, next_state, done) | |
state = next_state | |
score += reward | |
if done: | |
break | |
if score >= 195: | |
good_tries_combo += 1 | |
else: | |
good_tries_combo = 0 | |
scores.append(score) | |
mean_score = np.mean(scores[-100:]) | |
if mean_score >= 195: | |
print('Solved after {} episodes.format(e - 100)) | |
break | |
if e % 100 == 0: | |
print('[Episode {}] - Mean survival time over last 100 episodes was {} ticks.'.format(e, mean_score)) | |
agent.replay() | |
## Play Solved | |
while True: | |
input("Press enter to show magic") | |
state = np.reshape(env.reset(), [1, 4]) | |
while True: | |
action = agent.act(state) | |
state, _, done, _ = env.step(action) | |
state = np.reshape(state, [1, 4]) | |
env.render() | |
time.sleep(STEP_TIME) | |
if done: | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment