Skip to content

Instantly share code, notes, and snippets.

@Guitaricet
Created August 6, 2018 14:32
Show Gist options
  • Save Guitaricet/a09506f00907e64ad3578066841e1187 to your computer and use it in GitHub Desktop.
Save Guitaricet/a09506f00907e64ad3578066841e1187 to your computer and use it in GitHub Desktop.
Merge two computation graphs in tensorflow
# from
# https://stackoverflow.com/questions/47895225/tensorflow-combining-two-models-end-to-end
def freeze_graph(model_dir, output_node_names):
"""Extract the sub graph defined by the output nodes and convert
all its variables into constant
Args:
model_dir: the root folder containing the checkpoint state file
output_node_names: a string, containing all the output node's names,
comma separated
"""
if not tf.gfile.Exists(model_dir):
raise AssertionError(
"Export directory doesn't exist")
if not output_node_names:
print("You need to supply the name of the output node)
return -1
# We retrieve our checkpoint fullpath
checkpoint = tf.train.get_checkpoint_state(model_dir)
input_checkpoint = checkpoint.model_checkpoint_path
# We precise the file fullname of our freezed graph
absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
# We clear devices to allow TensorFlow to control on which device it will load operations
clear_devices = True
# We start a session using a temporary fresh Graph
with tf.Session(graph=tf.Graph()) as sess:
# We import the meta graph in the current default Graph
saver = tf.train.import_meta_graph(args.meta_graph_path, clear_devices=clear_devices)
# We restore the weights
saver.restore(sess, input_checkpoint)
# We use a built-in TF helper to export variables to constants
frozen_graph = tf.graph_util.convert_variables_to_constants(
sess, # The session is used to retrieve the weights
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes
output_node_names.split(",") # The output node names are used to select the usefull nodes
)
return frozen_graph
# Get the frozen graph
frozen_graph = freeze_graph(YOUR_MODEL_DIR, YOUR_OUTPUT_NODES)
# Set the frozen graph as a default graph
frozen_graph.as_default()
# Get the output tensor from the pre-trained model
pre_trained_model_result = frozen_graph.get_tensor_by_name(OUTPUT_TENSOR_NAME_OF_PRETRAINED_MODEL)
# Let's say you want to get the pre trained model result's square root
my_new_operation_results = tf.sqrt(pre_trained_model_result)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment