Created
July 31, 2018 08:07
-
-
Save Gunnvant/62ae5d7044c652f4ecba6caf937756da to your computer and use it in GitHub Desktop.
Get aspects from a text
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import spacy | |
import pandas as pd | |
import os | |
DATA_DIR="path to data" | |
"""Create a list of common words to remove""" | |
stop_words=["i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", "yours", "yourself", | |
"yourselves", "he", "him", "his", "himself", "she", "her", "hers", "herself", "it", "its", "itself", | |
"they", "them", "their", "theirs", "themselves", "what", "which", "who", "whom", "this", "that", "these", | |
"those", "am", "is", "are", "was", "were", "be", "been", "being", "have", "has", "had", "having", "do", | |
"does", "did", "doing", "a", "an", "the", "and", "but", "if", "or", "because", "as", "until", "while", | |
"of", "at", "by", "for", "with", "about", "against", "between", "into", "through", "during", "before", | |
"after", "above", "below", "to", "from", "up", "down", "in", "out", "on", "off", "over", "under", "again", | |
"further", "then", "once", "here", "there", "when", "where", "why", "how", "all", "any", "both", "each", | |
"few", "more", "most", "other", "some", "such", "no", "nor", "not", "only", "own", "same", "so", "than", | |
"too", "very", "s", "t", "can", "will", "just", "don", "should", "now"] | |
"""Load the pre-trained NLP model in spacy""" | |
nlp=spacy.load("en_core_web_lg") | |
"""Define a function to extract keywords""" | |
def get_aspects(x): | |
doc=nlp(x) ## Tokenize and extract grammatical components | |
doc=[i.text for i in doc if i.text not in stop_words and i.pos_=="NOUN"] ## Remove common words and retain only nouns | |
doc=list(map(lambda i: i.lower(),doc)) ## Normalize text to lower case | |
doc=pd.Series(doc) | |
doc=doc.value_counts().head().index.tolist() ## Get 5 most frequent nouns | |
return doc | |
"""Read the data""" | |
con=open(os.path.join(DATA_DIR,'reviews.txt')) | |
rev=con.read() | |
con.close() | |
"""Apply the function to get aspects from reviews""" | |
print(get_aspects(rev)) | |
# running this will yield | |
['phone', 'battery', 'camera', 'price', 'life'] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment