- π_{term} (σ_{docid=2}(Documents)) U π_{term} (σ_{count=3}(Documents))
- Try both union and union all to see the difference
- Try "or" instead of "union" and compare results with using union
- input
#!/bin/bash | |
# Check for CUDA and try to install. | |
# https://gitlab.com/nvidia/cuda/blob/ubuntu16.04/9.0/base/Dockerfile | |
apt-get update && apt-get install -y --no-install-recommends ca-certificates apt-transport-https gnupg-curl && \ | |
rm -rf /var/lib/apt/lists/* && \ | |
NVIDIA_GPGKEY_SUM=d1be581509378368edeec8c1eb2958702feedf3bc3d17011adbf24efacce4ab5 && \ | |
NVIDIA_GPGKEY_FPR=ae09fe4bbd223a84b2ccfce3f60f4b3d7fa2af80 && \ | |
apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub && \ |
#!/bin/bash | |
# download from a package | |
# https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-from-a-package | |
# https://download.docker.com/linux/ubuntu/dists/xenial/pool/stable/amd64/ | |
wget https://download.docker.com/linux/ubuntu/dists/xenial/pool/stable/amd64/docker-ce_18.06.0~ce~3-0~ubuntu_amd64.deb | |
wget https://github.com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb | |
sudo dpkg -i docker-ce_*.deb |
#!/bin/bash | |
sudo apt-get update | |
sudo apt-get install curl | |
# latest version | |
# https://repo.continuum.io/archive/ | |
curl -O https://repo.continuum.io/archive/Anaconda3-5.2.0-Linux-x86_64.sh | |
# recommend install directory |
defscrollback 5000 | |
termcapinfo xterm* ti@:te@ | |
startup_message off | |
hardstatus on | |
hardstatus alwayslastline | |
hardstatus string "%{.bW}%-w%{.rW}%n*%t%{-}%+w %= %c ${USER}@%H" | |
bindkey -k k1 select 0 | |
bindkey -k k2 select 1 | |
bindkey -k k3 select 2 |
#!/bin/bash | |
# Check for CUDA and try to install. | |
# https://gitlab.com/nvidia/cuda/blob/ubuntu16.04/9.0/base/Dockerfile | |
apt-get update && apt-get install -y --no-install-recommends ca-certificates apt-transport-https gnupg-curl && \ | |
rm -rf /var/lib/apt/lists/* && \ | |
NVIDIA_GPGKEY_SUM=d1be581509378368edeec8c1eb2958702feedf3bc3d17011adbf24efacce4ab5 && \ | |
NVIDIA_GPGKEY_FPR=ae09fe4bbd223a84b2ccfce3f60f4b3d7fa2af80 && \ | |
apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub && \ |
c = get_config() | |
c.NotebookApp.ip = '*' | |
c.NotebookApp.port = 8888 | |
c.NotebookApp.open_browser = False | |
c.NotebookApp.token = u'' |
#!/bin/bash | |
echo "Kind: $1" | |
echo "Session: $2" | |
echo "Epochs Start: $3" | |
echo "Epochs End: $4" | |
echo "Account: $name" | |
if [ $name -eq ""]; then | |
name="깃계정" | |
fi |
""" | |
Create train, valid, test iterators for CIFAR-10 [1]. | |
Easily extended to MNIST, CIFAR-100 and Imagenet. | |
[1]: https://discuss.pytorch.org/t/feedback-on-pytorch-for-kaggle-competitions/2252/4 | |
""" | |
import torch | |
import numpy as np |