Created
February 24, 2024 16:46
-
-
Save HDCharles/287ac5e997c7a8cf031004aad0e3a941 to your computer and use it in GitHub Desktop.
microbenchmarks
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn.functional as F | |
import triton | |
import triton.language as tl | |
from triton.ops.matmul import matmul as triton_matmul | |
from triton.ops.matmul import _kernel | |
from triton import Config | |
from torch._inductor import config | |
from torch import _dynamo | |
torch._inductor.config.coordinate_descent_tuning = True | |
import torchao | |
from torchao.quantization.quant_primitives import groupwise_affine_quantize_tensor | |
aten = torch.ops.aten | |
def get_configs_io_bound(): | |
configs = [] | |
for num_stages in [2, 3, 4, 5, 6]: | |
for block_m in [16, 32]: | |
for block_k in [32, 64]: | |
for block_n in [32, 64, 128, 256]: | |
num_warps = 2 if block_n <= 64 else 4 | |
configs.append( | |
Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': block_k, 'GROUP_SIZE_M': 8}, | |
num_stages=num_stages, num_warps=num_warps)) | |
return configs | |
config_list = [ | |
Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), | |
Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), | |
Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 32, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), | |
# good for int8 | |
Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), | |
Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=8), | |
Config({'BLOCK_SIZE_M': 256, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 256, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 128, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 128, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=4), | |
Config({'BLOCK_SIZE_M': 64, 'BLOCK_SIZE_N': 32, 'BLOCK_SIZE_K': 64, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), | |
Config({'BLOCK_SIZE_M': 32, 'BLOCK_SIZE_N': 64, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), | |
Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), | |
]+get_configs_io_bound() | |
@triton.autotune( | |
configs = [ | |
Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=3, num_warps=1), | |
Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=4, num_warps=1), | |
]+config_list, | |
key=['M', 'N', 'K'], | |
) | |
@triton.jit | |
def int8_weight_only_linear_kernel( | |
# Pointers to matrices | |
x_ptr, w_ptr, b_ptr, s_ptr, y_ptr, | |
# Matrix dimensions | |
M, N, K, | |
# The stride variables represent how much to increase the ptr by when moving by 1 | |
# element in a particular dimension. E.g. `stride_am` is how much to increase `x_ptr` | |
# by to get the element one row down (A has M rows). | |
stride_xm, stride_xk, | |
stride_wk, stride_wn, | |
stride_b, | |
stride_ym, stride_yn, | |
# Meta-parameters | |
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, | |
GROUP_SIZE_M: tl.constexpr, | |
): | |
"""Kernel for computing the matmul C = A x B. | |
A has shape (M, K), B has shape (K, N) and C has shape (M, N) | |
""" | |
# ----------------------------------------------------------- | |
# Map program ids `pid` to the block of Y it should compute. | |
# This is done in a grouped ordering to promote L2 data reuse. | |
# See above `L2 Cache Optimizations` section for details. | |
pid = tl.program_id(axis=0) | |
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) | |
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) | |
num_pid_in_group = GROUP_SIZE_M * num_pid_n | |
group_id = pid // num_pid_in_group | |
first_pid_m = group_id * GROUP_SIZE_M | |
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) | |
pid_m = first_pid_m + (pid % group_size_m) | |
pid_n = (pid % num_pid_in_group) // group_size_m | |
# ---------------------------------------------------------- | |
# Create pointers for the first blocks of X and W. | |
# We will advance this pointer as we move in the K direction | |
# and accumulate | |
# `x_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers | |
# `w_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers | |
# See above `Pointer Arithmetics` section for details | |
offs_xm = tl.max_contiguous((pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M,BLOCK_SIZE_M) | |
offs_wn = tl.max_contiguous((pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N,BLOCK_SIZE_N) | |
offs_k = tl.arange(0, BLOCK_SIZE_K) | |
x_ptrs = x_ptr + (offs_xm[:, None] * stride_xm + offs_k[None, :] * stride_xk) | |
w_ptrs = w_ptr + (offs_k[:, None] * stride_wk + offs_wn[None, :] * stride_wn) | |
b_ptrs = b_ptr + (offs_wn * stride_b) | |
step_w = BLOCK_SIZE_K * stride_wk | |
step_x = BLOCK_SIZE_K * stride_xk | |
# ----------------------------------------------------------- | |
# Iterate to compute a block of the Y matrix. | |
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block | |
# of fp32 values for higher accuracy. | |
# `accumulator` will be converted back to fp16 after the loop. | |
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) | |
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): | |
# Load the next block of A and B, generate a mask by checking the K dimension. | |
# If it is out of bounds, set it to 0. | |
x = tl.load(x_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) | |
w = tl.load(w_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) | |
# We accumulate along the K dimension. | |
accumulator += tl.dot(x, w.to(tl.bfloat16)) | |
# Advance the ptrs to the next K block. | |
x_ptrs += step_x | |
w_ptrs += step_w | |
s = tl.load(s_ptr) | |
b = tl.load(b_ptrs) | |
y = (accumulator.to(tl.bfloat16) * s + b) | |
# y = accumulator | |
# ----------------------------------------------------------- | |
# Write back the block of the output matrix Y with masks. | |
offs_ym = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) | |
offs_yn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) | |
y_ptrs = y_ptr + stride_ym * offs_ym[:, None] + stride_yn * offs_yn[None, :] | |
y_mask = (offs_ym[:, None] < M) & (offs_yn[None, :] < N) | |
tl.store(y_ptrs, y, mask=y_mask) | |
def int8_weight_only_linear(x, w, b, s): | |
# Check constraints. | |
assert x.shape[1] == w.shape[0], "Incompatible dimensions" | |
# assert x.is_contiguous(), "Matrix x must be contiguous" | |
# assert w.is_contiguous(), "Matrix w must be contiguous" | |
M, K = x.shape | |
K, N = w.shape | |
assert b.shape[0] == N | |
# Allocates output. | |
y = torch.empty((M, N), device=x.device, dtype=x.dtype) | |
# 1D launch kernel where each block gets its own program. | |
grid = lambda META: ( | |
triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), | |
) | |
int8_weight_only_linear_kernel[grid]( | |
x, w, b, s, y, | |
M, N, K, | |
x.stride(0), x.stride(1), | |
w.stride(0), w.stride(1), | |
b.stride(0), | |
y.stride(0), y.stride(1), | |
) | |
return y | |
@triton.autotune( | |
configs = [ | |
Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 256, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), | |
Config({'BLOCK_SIZE_M': 16, 'BLOCK_SIZE_N': 16, 'BLOCK_SIZE_K': 128, 'GROUP_SIZE_M': 8}, num_stages=5, num_warps=2), | |
]+config_list, | |
key=['M', 'N', 'K'], | |
) | |
@triton.jit | |
def uint4x2_weight_only_linear_kernel( | |
# Pointers to matrices | |
x_ptr, w_ptr, b_ptr, s_ptr, y_ptr, | |
# Matrix dimensions | |
M, N, K, # x is Mx(K*2) and w is KxN | |
# The stride variables represent how much to increase the ptr by when moving by 1 | |
# element in a particular dimension. E.g. `stride_am` is how much to increase `x_ptr` | |
# by to get the element one row down (A has M rows). | |
stride_xm, stride_xk, | |
stride_wk, stride_wn, | |
stride_b, | |
stride_ym, stride_yn, | |
# Meta-parameters | |
BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr, | |
GROUP_SIZE_M: tl.constexpr, | |
): | |
"""Kernel for computing the matmul C = A x B. | |
A has shape (M, K), B has shape (K, N) and C has shape (M, N) | |
""" | |
# ----------------------------------------------------------- | |
# Map program ids `pid` to the block of Y it should compute. | |
# This is done in a grouped ordering to promote L2 data reuse. | |
# See above `L2 Cache Optimizations` section for details. | |
pid = tl.program_id(axis=0) | |
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) | |
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) | |
num_pid_in_group = GROUP_SIZE_M * num_pid_n | |
group_id = pid // num_pid_in_group | |
first_pid_m = group_id * GROUP_SIZE_M | |
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M) | |
pid_m = first_pid_m + (pid % group_size_m) | |
pid_n = (pid % num_pid_in_group) // group_size_m | |
# ---------------------------------------------------------- | |
# Create pointers for the first blocks of X and W. | |
# We will advance this pointer as we move in the K direction | |
# and accumulate | |
# `x_ptrs` is a block of [BLOCK_SIZE_M, BLOCK_SIZE_K] pointers | |
# `w_ptrs` is a block of [BLOCK_SIZE_K, BLOCK_SIZE_N] pointers | |
# See above `Pointer Arithmetics` section for details | |
offs_xm = tl.max_contiguous((pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M,BLOCK_SIZE_M) | |
offs_wn = tl.max_contiguous((pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N,BLOCK_SIZE_N) | |
offs_k = tl.arange(0, BLOCK_SIZE_K) | |
x_ptrs = x_ptr + (offs_xm[:, None] * stride_xm + offs_k[None, :] * stride_xk) | |
w_ptrs = w_ptr + (offs_k[:, None]//2 * stride_wk + offs_wn[None, :] * stride_wn) | |
w_shifts = (offs_k % 2) * 4 | |
b_ptrs = b_ptr + (offs_wn * stride_b) | |
step_w = BLOCK_SIZE_K//2 * stride_wk | |
step_x = BLOCK_SIZE_K * stride_xk | |
# ----------------------------------------------------------- | |
# Iterate to compute a block of the Y matrix. | |
# We accumulate into a `[BLOCK_SIZE_M, BLOCK_SIZE_N]` block | |
# of fp32 values for higher accuracy. | |
# `accumulator` will be converted back to fp16 after the loop. | |
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) | |
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): | |
# Load the next block of A and B, generate a mask by checking the K dimension. | |
# If it is out of bounds, set it to 0. | |
x = tl.load(x_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) | |
w = tl.load(w_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) | |
w = ((w >> w_shifts[:, None]) & 0xF) - 8 | |
# We accumulate along the K dimension. | |
accumulator += tl.dot(x, w.to(tl.bfloat16)) | |
# Advance the ptrs to the next K block. | |
x_ptrs += step_x | |
w_ptrs += step_w | |
s = tl.load(s_ptr) | |
b = tl.load(b_ptrs) | |
y = (accumulator.to(tl.bfloat16) * s)+b | |
# ----------------------------------------------------------- | |
# Write back the block of the output matrix Y with masks. | |
offs_ym = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) | |
offs_yn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) | |
y_ptrs = y_ptr + stride_ym * offs_ym[:, None] + stride_yn * offs_yn[None, :] | |
y_mask = (offs_ym[:, None] < M) & (offs_yn[None, :] < N) | |
tl.store(y_ptrs, y, mask=y_mask) | |
def uint4x2_weight_only_linear(x, w, b, s): | |
# Check constraints. | |
assert x.shape[1] == w.shape[0]*2, "Incompatible dimensions" | |
# assert x.is_contiguous(), "Matrix x must be contiguous" | |
# assert w.is_contiguous(), "Matrix w must be contiguous" | |
M, K = x.shape | |
_, N = w.shape | |
assert b.shape[0] == N | |
# Allocates output. | |
y = torch.empty((M, N), device=x.device, dtype=x.dtype) | |
# 1D launch kernel where each block gets its own program. | |
grid = lambda META: ( | |
triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), | |
) | |
uint4x2_weight_only_linear_kernel[grid]( | |
x, w, b, s, y, | |
M, N, K, | |
x.stride(0), x.stride(1), | |
w.stride(0), w.stride(1), | |
b.stride(0), | |
y.stride(0), y.stride(1), | |
) | |
return y | |
quantiles = [0.5, 0.2, 0.8] | |
result = {} | |
for D in [2**6, 2**7, 2**8, 2**9, 2**10, 2**11]: #, 2**10, 2**12, 2**14]: | |
result[D]={} | |
result[D]["cublas linear"]={} | |
result[D]["triton matmul"]={} | |
result[D]["int8 linear"]={} | |
result[D]["alt int8 linear"]={} | |
result[D]["uint4x2 linear"]={} | |
result[D]["int4 tinygemm"]={} | |
N = D | |
for t_x in [0,1]: | |
for t_w in [1,0]: | |
print("D tx tw",D, t_x, t_w) | |
x = torch.randn(1,D).to('cuda').to(torch.bfloat16) | |
w_bf16 = torch.randn(D, N, dtype=torch.bfloat16).cuda() | |
bias = torch.randn(N, dtype=torch.bfloat16).cuda() | |
if t_x: | |
x = x.t().contiguous().t() | |
if t_w: | |
w_bf16 = w_bf16.t().contiguous().t() | |
print("cublas linear") | |
try: | |
torch.nn.functional.linear(x, w_bf16, bias) | |
torch.cuda.synchronize() | |
result[D]["cublas linear"][(t_x, t_w)] = triton.testing.do_bench(lambda: torch.nn.functional.linear(x, w_bf16, bias), quantiles=quantiles)[0] | |
except: | |
print("err") | |
pass | |
torch.cuda.synchronize() | |
print("int4 tinygemm") | |
try: | |
I=min(D//32,8) | |
G=min(128, D//I) | |
w_int4, scales_and_zeros = groupwise_affine_quantize_tensor(w_bf16, 4, 32) | |
w_int4pack = aten._convert_weight_to_int4pack(w_int4.contiguous(), I) | |
del w_int4 | |
result[D]["int4 tinygemm"][(t_x, t_w)] = triton.testing.do_bench(lambda: aten._weight_int4pack_mm(x.contiguous(), w_int4pack, 32, scales_and_zeros), quantiles=quantiles)[0] | |
del w_bf16, scales_and_zeros, w_int4pack | |
except: | |
print("err") | |
pass | |
w_int8 = torch.randint(-128, 127, (D, N), dtype=torch.int8).cuda() | |
if t_w: | |
w_int8 = w_int8.t().contiguous().t() | |
scale = torch.randn(N, dtype=torch.bfloat16).cuda() | |
print("triton matmul") | |
try: | |
triton_matmul(x, w_int8) | |
torch.cuda.synchronize() | |
result[D]["triton matmul"][(t_x, t_w)] = triton.testing.do_bench(lambda: triton_matmul(x, w_int8), quantiles=quantiles)[0] | |
except: | |
print("err") | |
pass | |
torch.cuda.synchronize() | |
torch._dynamo.reset() | |
print("alt wo mm") | |
def alt_wo_mm(x, w_int8, bias, scale): | |
return (x.unsqueeze(-1) * w_int8.unsqueeze(0)).sum(dim=1)*scale+bias | |
# return torch.mm(x, w_int8)*scale+bias | |
comp_fn=torch.compile(alt_wo_mm, mode='max-autotune') | |
comp_fn(x, w_int8, bias, scale) | |
comp_fn(x, w_int8, bias, scale) | |
comp_fn(x, w_int8, bias, scale) | |
result[D]["alt int8 linear"][(t_x, t_w)] = triton.testing.do_bench(lambda: comp_fn(x, w_int8, bias, scale), quantiles=quantiles)[0] | |
print("int8 linear") | |
try: | |
int8_weight_only_linear(x, w_int8, bias, scale) | |
torch.cuda.synchronize() | |
result[D]["int8 linear"][(t_x, t_w)] = triton.testing.do_bench(lambda: int8_weight_only_linear(x, w_int8, bias, scale), quantiles=quantiles)[0] | |
except: | |
print("err") | |
pass | |
torch.cuda.synchronize() | |
del w_int8 | |
w_uint4x2 = torch.randint(0, 255, (D//2, N), dtype=torch.uint8).cuda() | |
if t_w: | |
w_uint4x2 = w_uint4x2.t().contiguous().t() | |
print("uint4x2 linear") | |
try: | |
assert t_w==1 | |
# uint4x2_weight_only_linear(x, w_uint4x2, bias, scale) | |
torch.cuda.synchronize() | |
result[D]["uint4x2 linear"][(t_x, t_w)] = triton.testing.do_bench(lambda: uint4x2_weight_only_linear(x, w_uint4x2, bias, scale), quantiles=quantiles)[0] | |
except: | |
print("err") | |
pass | |
torch.cuda.synchronize() | |
del w_uint4x2, scale, bias | |
caches = {"triton matmul": _kernel.cache, "int8 linear": int8_weight_only_linear_kernel.cache, "uint4x2 linear": uint4x2_weight_only_linear_kernel.cache} | |
print("| X . W | X . Wt | Xt . W | Xt . Wt | model | config") | |
for D in result.keys(): | |
print(f"{1}, {D}, {D}") | |
for name in result[D].keys(): | |
r = result[D][name] | |
used_config = None | |
if name in caches: | |
cache = caches[name] | |
for key,config in cache.items(): | |
if key[0]==1 and key[1]==D and key[2]==D: | |
used_config=config | |
break | |
print(f"| {(r[(0,0)] if (0,0) in r else 0):2.4f} | {(r[(0,1)] if (0,1) in r else 0):2.4f} | {(r[(1,0)] if (1,0) in r else 0):2.4f} | {(r[(1,1)] if (1,1) in r else 0):2.4f} | {name:<15} | {used_config}") | |
# install: pip install -U --index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/Triton-Nightly/pypi/simple/ triton-nightly | |
# instlal: pip install torchao | |
# using torch compiled from 2.1.0a0+git9c2122d or nightly | |
# using cuda 12.0 on A100 GPU | |
""" | |
| X . W | X . Wt | Xt . W | Xt . Wt | model | config | |
1, 64, 64 | |
| 0.0103 | 0.0089 | 0.0095 | 0.0083 | cublas linear | None | |
| 0.1582 | 0.1514 | 0.1542 | 0.1551 | triton matmul | BLOCK_M: 32, BLOCK_N: 32, BLOCK_K: 32, SPLIT_K: 1, num_warps: 2, num_ctas: 1, num_stages: 6, enable_warp_specialization: False, enable_persistent: False | |
| 0.0927 | 0.1114 | 0.0900 | 0.1010 | int8 linear | BLOCK_SIZE_M: 32, BLOCK_SIZE_N: 256, BLOCK_SIZE_K: 32, GROUP_SIZE_M: 8, num_warps: 4, num_ctas: 1, num_stages: 4, enable_warp_specialization: False, enable_persistent: False | |
| 0.0250 | 0.0248 | 0.0252 | 0.0248 | alt int8 linear | None | |
| 0.0000 | 0.1145 | 0.0000 | 0.0969 | uint4x2 linear | BLOCK_SIZE_M: 32, BLOCK_SIZE_N: 128, BLOCK_SIZE_K: 64, GROUP_SIZE_M: 8, num_warps: 4, num_ctas: 1, num_stages: 6, enable_warp_specialization: False, enable_persistent: False | |
| 0.0072 | 0.0077 | 0.0072 | 0.0077 | int4 tinygemm | None | |
1, 128, 128 | |
| 0.0091 | 0.0086 | 0.0092 | 0.0086 | cublas linear | None | |
| 0.1548 | 0.1761 | 0.1569 | 0.1776 | triton matmul | BLOCK_M: 16, BLOCK_N: 32, BLOCK_K: 64, SPLIT_K: 1, num_warps: 2, num_ctas: 1, num_stages: 5, enable_warp_specialization: False, enable_persistent: False | |
| 0.1129 | 0.1096 | 0.1029 | 0.0940 | int8 linear | BLOCK_SIZE_M: 32, BLOCK_SIZE_N: 64, BLOCK_SIZE_K: 64, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 3, enable_warp_specialization: False, enable_persistent: False | |
| 0.0257 | 0.0253 | 0.0256 | 0.0251 | alt int8 linear | None | |
| 0.0000 | 0.1070 | 0.0000 | 0.0928 | uint4x2 linear | BLOCK_SIZE_M: 16, BLOCK_SIZE_N: 64, BLOCK_SIZE_K: 64, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 6, enable_warp_specialization: False, enable_persistent: False | |
| 0.0080 | 0.0081 | 0.0080 | 0.0080 | int4 tinygemm | None | |
1, 256, 256 | |
| 0.0089 | 0.0097 | 0.0089 | 0.0097 | cublas linear | None | |
| 0.1685 | 0.1805 | 0.1648 | 0.1735 | triton matmul | BLOCK_M: 16, BLOCK_N: 64, BLOCK_K: 32, SPLIT_K: 1, num_warps: 2, num_ctas: 1, num_stages: 5, enable_warp_specialization: False, enable_persistent: False | |
| 0.0938 | 0.0991 | 0.1099 | 0.1094 | int8 linear | BLOCK_SIZE_M: 32, BLOCK_SIZE_N: 64, BLOCK_SIZE_K: 32, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 4, enable_warp_specialization: False, enable_persistent: False | |
| 0.0284 | 0.0260 | 0.0286 | 0.0250 | alt int8 linear | None | |
| 0.0000 | 0.1109 | 0.0000 | 0.1018 | uint4x2 linear | BLOCK_SIZE_M: 16, BLOCK_SIZE_N: 128, BLOCK_SIZE_K: 64, GROUP_SIZE_M: 8, num_warps: 4, num_ctas: 1, num_stages: 6, enable_warp_specialization: False, enable_persistent: False | |
| 0.0083 | 0.0083 | 0.0077 | 0.0083 | int4 tinygemm | None | |
1, 512, 512 | |
| 0.0111 | 0.0110 | 0.0118 | 0.0102 | cublas linear | None | |
| 0.1663 | 0.1720 | 0.1597 | 0.1666 | triton matmul | BLOCK_M: 16, BLOCK_N: 32, BLOCK_K: 32, SPLIT_K: 1, num_warps: 2, num_ctas: 1, num_stages: 5, enable_warp_specialization: False, enable_persistent: False | |
| 0.1089 | 0.1111 | 0.1189 | 0.0973 | int8 linear | BLOCK_SIZE_M: 16, BLOCK_SIZE_N: 32, BLOCK_SIZE_K: 32, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 6, enable_warp_specialization: False, enable_persistent: False | |
| 0.0300 | 0.0264 | 0.0300 | 0.0265 | alt int8 linear | None | |
| 0.0000 | 0.0961 | 0.0000 | 0.0975 | uint4x2 linear | BLOCK_SIZE_M: 16, BLOCK_SIZE_N: 32, BLOCK_SIZE_K: 64, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 4, enable_warp_specialization: False, enable_persistent: False | |
| 0.0086 | 0.0087 | 0.0086 | 0.0083 | int4 tinygemm | None | |
1, 1024, 1024 | |
| 0.0114 | 0.0172 | 0.0119 | 0.0167 | cublas linear | None | |
| 0.1698 | 0.1659 | 0.1594 | 0.1691 | triton matmul | BLOCK_M: 16, BLOCK_N: 32, BLOCK_K: 32, SPLIT_K: 1, num_warps: 2, num_ctas: 1, num_stages: 5, enable_warp_specialization: False, enable_persistent: False | |
| 0.1048 | 0.1034 | 0.0933 | 0.1035 | int8 linear | BLOCK_SIZE_M: 32, BLOCK_SIZE_N: 64, BLOCK_SIZE_K: 64, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 4, enable_warp_specialization: False, enable_persistent: False | |
| 0.0359 | 0.0312 | 0.0357 | 0.0313 | alt int8 linear | None | |
| 0.0000 | 0.1000 | 0.0000 | 0.1064 | uint4x2 linear | BLOCK_SIZE_M: 16, BLOCK_SIZE_N: 16, BLOCK_SIZE_K: 256, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 5, enable_warp_specialization: False, enable_persistent: False | |
| 0.0100 | 0.0100 | 0.0094 | 0.0103 | int4 tinygemm | None | |
1, 2048, 2048 | |
| 0.0174 | 0.0235 | 0.0174 | 0.0229 | cublas linear | None | |
| 0.1655 | 0.1730 | 0.1585 | 0.1605 | triton matmul | BLOCK_M: 16, BLOCK_N: 32, BLOCK_K: 64, SPLIT_K: 1, num_warps: 2, num_ctas: 1, num_stages: 6, enable_warp_specialization: False, enable_persistent: False | |
| 0.1054 | 0.1046 | 0.0956 | 0.0980 | int8 linear | BLOCK_SIZE_M: 16, BLOCK_SIZE_N: 32, BLOCK_SIZE_K: 64, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 6, enable_warp_specialization: False, enable_persistent: False | |
| 0.0458 | 0.0380 | 0.0457 | 0.0379 | alt int8 linear | None | |
| 0.0000 | 0.1135 | 0.0000 | 0.1096 | uint4x2 linear | BLOCK_SIZE_M: 16, BLOCK_SIZE_N: 16, BLOCK_SIZE_K: 128, GROUP_SIZE_M: 8, num_warps: 2, num_ctas: 1, num_stages: 5, enable_warp_specialization: False, enable_persistent: False | |
| 0.0125 | 0.0124 | 0.0125 | 0.0125 | int4 tinygemm | None | |
""" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment