Last active
August 8, 2017 04:59
-
-
Save HTLife/0e26f321b8f5711ee048b8e32a9c1303 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import os | |
import tensorflow as tf | |
#import urllib2 | |
#from datasets import imagenet | |
#from nets import inception | |
#from preprocessing import inception_preprocessing | |
from PIL import Image, ImageDraw, ImageFont | |
import imghdr | |
import numpy as np | |
import inception_preprocessing | |
from inception_resnet_v2 import inception_resnet_v2, inception_resnet_v2_arg_scope | |
#State your log directory where you can retrieve your model | |
log_dir = './log' | |
dataset_dir = './data/test/teeth/1' | |
#Get the latest checkpoint file | |
checkpoint_file = tf.train.latest_checkpoint(log_dir) | |
slim = tf.contrib.slim | |
batch_size = 3 | |
image_size = 299 | |
checkpoints_filename = checkpoint_file#'inception_resnet_v2_2016_08_30.ckpt' | |
model_name = 'InceptionResnetV2' | |
sess = tf.InteractiveSession() | |
graph = tf.Graph() | |
graph.as_default() | |
def main(): | |
for image_file in os.listdir(dataset_dir): | |
try: | |
image_type = imghdr.what(os.path.join(dataset_dir, image_file)) | |
if not image_type: | |
continue | |
except IsADirectoryError: | |
continue | |
filepath = os.path.join(dataset_dir, image_file) | |
print(filepath) | |
imgPath = filepath#'./data/test/teeth/1/7005.jpg' | |
testImage_string = tf.gfile.FastGFile(imgPath, 'rb').read() | |
testImage = tf.image.decode_jpeg(testImage_string, channels=3) | |
processed_image = inception_preprocessing.preprocess_image(testImage, image_size, image_size, is_training=False) | |
processed_images = tf.expand_dims(processed_image, 0) | |
with slim.arg_scope(inception_resnet_v2_arg_scope()): | |
logits, _ = inception_resnet_v2(processed_images, num_classes=16, is_training=False) | |
probabilities = tf.nn.softmax(logits) | |
init_fn = slim.assign_from_checkpoint_fn( | |
checkpoint_file, | |
slim.get_model_variables(model_name)) | |
init_fn(sess) | |
np_image, probabilities = sess.run([processed_images, probabilities]) | |
probabilities = probabilities[0, 0:] | |
sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x: x[1])] | |
#print(probabilities) | |
print(probabilities.argmax(axis=0)) | |
#names = imagenet.create_readable_names_for_imagenet_labels() | |
#for i in range(15): | |
# index = sorted_inds[i] | |
# print((probabilities[index], names[index])) | |
if __name__ == '__main__': | |
main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hey , were you able to solve the ValueError: When attempting to re-use a scope by suppling adictionary, kwargs must be empty.?
I am stuck at the same error and will really appreciate any help . Thanks!