Skip to content

Instantly share code, notes, and snippets.

@HTLife
Last active November 11, 2022 08:29
Show Gist options
  • Save HTLife/4c0d6e585ecbeeff85a72fc19f82b49c to your computer and use it in GitHub Desktop.
Save HTLife/4c0d6e585ecbeeff85a72fc19f82b49c to your computer and use it in GitHub Desktop.
GTSAM segmentation fault at evaluateError
cmake_minimum_required(VERSION 3.16)
project(robomap_gtsam_example LANGUAGES C CXX)
find_package(GTSAM 4.0 REQUIRED QUIET)
set(INCLUDE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/include")
include_directories(include
${INCLUDE_DIR} # make sure your .h all inside.
${GTSAM_INCLUDE_DIRS}
${EIGEN3_INCLUDE_DIRS}
)
link_directories(
${GTSAM_LIBRARY_DIRS}
)
file(GLOB SOURCES ${PROJECT_SOURCE_DIR}/src/*.cpp)
add_executable(${PROJECT_NAME} ${SOURCES})
target_link_libraries(${PROJECT_NAME}
gtsam)
install(TARGETS ${PROJECT_NAME}
COMPONENT linapp
RUNTIME DESTINATION ${CMAKE_INSTALL_BIN_DIR}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIB_DIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIB_DIR}
DESTINATION ${CMAKE_INSTALL_BIN_DIR}
)
├── CMakeLists.txt
├── include
│ └── GPSPose2Factor.h
├── README.md
└── src
└── main.cpp
/**
* @file GPSPose2Factor.h
* @brief 2D 'GPS' like factor for Pose2
* @date Nov 8, 2016
* @author Jing Dong
*/
/**
* A simple 2D 'GPS' like factor
* The factor contains a X-Y position measurement (mx, my) for a Pose2, but no rotation information
* The error vector will be [x-mx, y-my]'
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Vector.h>
#include <gtsam/geometry/Pose2.h>
#include <math.h>
// you can custom namespace (if needed for your project)
namespace gtsamexamples
{
class GravityFactor : public gtsam::NoiseModelFactor2<gtsam::Pose2, gtsam::Pose2>
{
private:
// measurement information
double mx_, my_, mtheta_;
public:
typedef NoiseModelFactor2<gtsam::Pose2, gtsam::Pose2> Base;
/**
* Constructor
* @param poseKey associated pose varible key
* @param model noise model for GPS snesor, in X-Y
* @param m Point2 measurement
*/
GravityFactor(
gtsam::Key key1,
gtsam::Key key2,
// const gtsam::Pose2 m,
const double theta,
gtsam::SharedNoiseModel model) :
Base(model, key1, key2),
mx_(0),
my_(0),
mtheta_(theta) {
}
// error function
// @param p the pose in Pose2
// @param H the optional Jacobian matrix, which use boost optional and has default null pointer
gtsam::Vector evaluateError(
const gtsam::Pose2 &p1,
const gtsam::Pose2 &p2,
boost::optional<gtsam::Matrix&> H1 = boost::none,
boost::optional<gtsam::Matrix&> H2 = boost::none) const
{
const gtsam::Rot2& R1 = p1.rotation();
const gtsam::Rot2& R2 = p2.rotation();
const gtsam::Point2& P1 = p1.translation();
const gtsam::Point2& P2 = p2.translation();
gtsam::Rot2 angle(double(-M_PI/2));
gtsam::Matrix angleM = (gtsam::Matrix(2,2) <<
angle.c(), -angle.s(),
angle.s(), angle.c()).finished();
gtsam::Matrix R1_M = (gtsam::Matrix(2,2) <<
R1.c(), -R1.s(),
R1.s(), R1.c()).finished();
gtsam::Matrix R2_M = (gtsam::Matrix(2,2) <<
R2.c(), -R2.s(),
R2.s(), R2.c()).finished();
gtsam::Matrix T_M = (gtsam::Matrix(2,1) <<
P1.x() - P2.x(),
P1.y() - P2.y()).finished();
if (H1) (*H1) = (gtsam::Matrix(3,3) <<
-R2_M.transpose()*R1_M, -angleM*R2_M.transpose()*T_M,
0, 0, -1).finished();
if (H2) (*H2) = (gtsam::Matrix(3,3) <<
1, 0, 0,
0, 1, 0,
0, 0, 1).finished();
// return error vector
return (gtsam::Vector() << p2.theta() - p1.theta() - mtheta_).finished();
}
// gtsam::Vector unwhitenedError(
// const double ax,
// boost::optional<gtsam::Matrix &> H = boost::none) const
// {
// return (gtsam::Vector() << 0).finished();
// }
};
} // namespace gtsamexamples
// ref : https://github.com/borglab/gtsam/blob/b1a822562be80040cb59323fb9d585ad15690c34/gtsam/slam/BetweenFactor.h
/**
* @file Pose2GPSExample.cpp
* @brief 2D example with custom 'GPS' factor
* @date Nov 8, 2016
* @author Jing Dong
*/
/**
* A simple 2D pose-graph SLAM with 'GPS' measurement
* The robot moves from x1 to x3, with odometry information between each pair.
* each step has an associated 'GPS' measurement by GPSPose2Factor
* The graph strcuture is shown:
*
* g1 g2 g3
* | | |
* x1 - x2 - x3
*/
// custom GPS factor
#include "GPSPose2Factor.h"
// GTSAM headers
#include <gtsam/geometry/Pose2.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
using namespace std;
using namespace gtsam;
using namespace gtsamexamples;
// 2D LiDAR constrain
//
//
// (delta_x, delta_y, delta_theta)
//
// (1,0,pi/10) (1,0,pi/10)
//
// ┌─────────┐ ┌─────────┐ ┌─────────┐
// │ ├────────────┤ ├─────────────┤ │
// │ pose1 │ │ pose2 │ │ pose3 │
// │ ├────────────┤ ├─────────────┤ │
// └─────────┘ └─────────┘ └─────────┘
// (0) (0)
//
// (delta_theta)
//
// IMU direction constrain
// The pi/10 lidar angle is simulating the pitch/roll drift of 3D lidar pose
int main(int argc, char** argv) {
// Create a factor graph container
NonlinearFactorGraph graph;
// odometry measurement noise model (covariance matrix)
noiseModel::Diagonal::shared_ptr odomModel =
noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.1));
// Add odometry factors
// Create odometry (Between) factors between consecutive poses
// robot makes 90 deg right turns at x3 - x5
graph.add(BetweenFactor<Pose2>(Symbol('x', 1), Symbol('x', 2), Pose2(1, 0, M_PI/10), odomModel));
graph.add(BetweenFactor<Pose2>(Symbol('x', 2), Symbol('x', 3), Pose2(1, 0, M_PI/10), odomModel));
// 2D 'GPS' measurement noise model, 2-dim
gtsam::Vector vector6(6);
float noiseScore = 1.0;
vector6 << noiseScore, noiseScore, noiseScore, noiseScore, noiseScore, noiseScore;
noiseModel::Diagonal::shared_ptr constraintNoise = noiseModel::Diagonal::Variances(vector6);
// Add the GPS factors
// note that there is NO prior factor needed at first pose, since GPS provides
// the global positions (and rotations given more than 1 GPS measurements)
graph.add(
GravityFactor(
Symbol('x', 1),
Symbol('x', 2),
0 /* zero angle */,
constraintNoise));
graph.add(
GravityFactor(
Symbol('x', 2),
Symbol('x', 3),
0 /* zero angle */,
constraintNoise));
// print factor graph
graph.print("\nFactor Graph:\n");
// initial varible values for the optimization
// add random noise from ground truth values
Values initials;
initials.insert(Symbol('x', 1), Pose2(0, 0, 0));
initials.insert(Symbol('x', 2), Pose2(0.951, -0.309, -0.1));
initials.insert(Symbol('x', 3), Pose2(1.76, -0.8968, -0.2));
// print initial values
initials.print("\nInitial Values:\n");
// Use Gauss-Newton method optimizes the initial values
GaussNewtonParams parameters;
// print per iteration
parameters.setVerbosity("ERROR");
// optimize!
GaussNewtonOptimizer optimizer(graph, initials, parameters);
// Values results = optimizer.optimize();
// // print final values
// results.print("Final Result:\n");
// // Calculate marginal covariances for all poses
// Marginals marginals(graph, results);
// // print marginal covariances
// cout << "x1 covariance:\n" << marginals.marginalCovariance(Symbol('x', 1)) << endl;
// cout << "x2 covariance:\n" << marginals.marginalCovariance(Symbol('x', 2)) << endl;
// cout << "x3 covariance:\n" << marginals.marginalCovariance(Symbol('x', 3)) << endl;
return 0;
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment