-
-
Save HamoyeHQ/3dc027be9818e4bc64f70586e7bb0bf8 to your computer and use it in GitHub Desktop.
# convention for importing numpy | |
import numpy as np | |
arr = [6, 7, 8, 9] | |
print(type(arr)) # prints <class 'list'> | |
a = np.array(arr) | |
print(type(a)) # prints <class 'numpy.ndarray'> | |
print(a.shape) # prints (4,) - a is a 1d array with 4 items | |
print(a.dtype) # prints int64 | |
# get the dimension of a with ndim | |
print(a.ndim) # prints 1 | |
b = np.array([[1, 2, 3], [4, 5, 6]]) | |
print(b) # prints [[1 2 3] | |
[4 5 6]] | |
print(b.ndim) # prints 2 | |
b.shape # prints (2, 3) - b a 2d array with 2 rows and 3 columns | |
import numpy as np | |
arr = [6, 7, 8, 9] | |
print(type(arr)) # prints <class 'list'> | |
a = np.array(arr) | |
print(type(a)) # prints <class 'numpy.ndarray'> | |
print(a.shape) # prints (4,) - a is a 1d array with 4 items | |
print(a.dtype) # prints int64 | |
# get the dimension of a with ndim | |
print(a.ndim) # prints 1 | |
b = np.array([[1, 2, 3], [4, 5, 6]]) | |
print(b) # prints [[1 2 3] | |
[4 5 6]] | |
print(b.ndim) # prints 2 | |
b.shape # prints (2, 3) - b a 2d array with 2 rows and 3 columns |
# a 2x3 array with random values | |
np.random.random((2, 3)) = | |
array([[0.60793904, 0.02881965, 0.73022145], | |
[0.34183628, 0.63274067, 0.07945224]]) | |
# a 2x3 array of zeros | |
np.zeros((2, 3)) = array([[0., 0., 0.],[0., 0., 0.]]) | |
# a 2x3 array of ones | |
np.zeros((2, 3)) = array([[1., 1., 1.], [1., 1., 1.]]) | |
# a 2x3 array of ones | |
np.zeros((2, 3)) = array([[1., 1., 1.], [1., 1., 1.]]) | |
# a 3x3 identity matrix | |
np.zeros(3) = array([[1., 0., 0.],[0., 1., 0.],[0., 0., 1.]]) |
#The elements in the example arrays above can be accessed by indexing like lists in Python such that: | |
a[0] = 6, a[3] = 9, b[0, 0] = 1 , b[1, 2] = 6 c[0, 1] = 8. | |
#Elements in arrays can also be retrieved by slicing rows and columns or a combination of indexing and slicing. | |
d[1, 0:2] = array([9., 8.]) | |
e = np.array([[10, 11, 12],[13, 14, 15], | |
[16, 17, 18],[19, 20, 21]]) | |
# slicing | |
e[:3, :2] = array([[10, 11], [13, 14],[16, 17]]) | |
#There are other advanced methods of indexing which are shown below. | |
# integer indexing | |
e[[2, 0, 3, 1],[2, 1, 0, 2]] = array([18, 11, 19, 15]) | |
# boolean indexing meeting a specified condition | |
e[e>15] = array([16, 17, 18, 19, 20, 21]) |
c = np.array([[9.0, 8.0, 7.0], [1.0, 2.0, 3.0]]) | |
d = np.array([[4.0, 5.0, 6.0], [9.0, 8.0, 7.0]]) | |
c + d = array([[13., 13., 13.], c * d = array([[36., 40., 42.], | |
[ 10., 10., 10.]]) [9., 16., 21.]]) | |
5 / d = array([[1.25 , 1. , 0.83333333], | |
[0.55555556, 0.625 , 0.71428571]]) | |
c ** 2 = array([[81., 64., 49.],[ 1., 4., 9.]]) |
a 2x3 array of ones
np.ones((2, 3)) = array([[1., 1., 1.], [1., 1., 1.]])
Weldone guys
Good day,
I think this is supposed to be showcasing empty(), zeros(), ones(), full(). Instead we have repetitions of np.zerosa 2x3 array of zeros
np.zeros((2, 3)) = array([[0., 0., 0.],[0., 0., 0.]])
a 2x3 array of ones
np.zeros((2, 3)) = array([[1., 1., 1.], [1., 1., 1.]])
a 2x3 array of ones
np.zeros((2, 3)) = array([[1., 1., 1.], [1., 1., 1.]])
a 3x3 identity matrix
np.zeros(3) = array([[1., 0., 0.],[0., 1., 0.],[0., 0., 1.]])
Thought I was alone in figuring this out.
Good work guys!
Integer indexing has a ridiculously cool vibe!
The 'Star' omment was very helpful. Big ups
It took me a while to get familiar with the lessons, the explanations here really went a long way in making things easier for me. Muchas gracias.
who can explain this for me
#The elements in the example arrays above can be accessed by indexing like lists in Python such that:
a[0] = 6, a[3] = 9, b[0, 0] = 1 , b[1, 2] = 6 c[0, 1] = 8.
#Elements in arrays can also be retrieved by slicing rows and columns or a combination of indexing and slicing.
d[1, 0:2] = array([9., 8.])
e = np.array([[10, 11, 12],[13, 14, 15],
[16, 17, 18],[19, 20, 21]])
slicing
e[:3, :2] = array([[10, 11], [13, 14],[16, 17]])
#There are other advanced methods of indexing which are shown below.
integer indexing
e[[2, 0, 3, 1],[2, 1, 0, 2]] = array([18, 11, 19, 15])
boolean indexing meeting a specified condition
e[e>15] = array([16, 17, 18, 19, 20, 21])
This is quite self explanatory. Thanks