Created
September 26, 2011 12:44
-
-
Save HarlanH/1242145 to your computer and use it in GitHub Desktop.
Data Science DC Titles Visualization
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Data Science DC Titles Visualization | |
# Here's how this will work. In a main loop, a parameterized visualization function | |
# is called every N seconds. Each function gets the source spreadsheet fresh, and | |
# generates a visual. | |
# aspects of this code borrowed from Drew Conway: | |
# https://raw.github.com/drewconway/ZIA/master/R/better_word_cloud/better_word_cloud.R | |
library(plyr) | |
library(ggplot2) | |
library(tm) | |
options(stringsAsFactors=FALSE) | |
loop.time <- 15 | |
source.data.url <- 'https://docs.google.com/spreadsheet/pub?hl=en_US&hl=en_US&key=0AnaXKp9bt6OXdEhYWmFocmgwU1RBa01qX0ttZ0JZaVE&single=true&gid=0&output=csv' | |
optimal.spacing<-function(spaces) { | |
if(spaces>1) { | |
spacing<-1/spaces | |
if(spaces%%2 > 0) { | |
lim<-spacing*floor(spaces/2) | |
return(seq(-lim,lim,spacing)) | |
} | |
else { | |
lim<-spacing*(spaces-1) | |
return(seq(-lim,lim,spacing*2)) | |
} | |
} | |
else { | |
return(0) | |
} | |
} | |
plot.function <- function(column, col.value, title) { | |
temporaryFile <- tempfile() | |
download.file(url=source.data.url,destfile=temporaryFile, method="curl") | |
dat <- read.csv(temporaryFile) | |
names(dat) <- c('Timestamp', 'Title', 'DataScientist', 'Sector', 'Education', 'Training') | |
# make a DT matrix | |
titles.corpus <- Corpus(DataframeSource(subset(dat, select=c('Title')))) | |
titles.matrix <- TermDocumentMatrix(titles.corpus, control=list(stopwords=stopwords(), removeNumbers=TRUE, removePunctuation=TRUE)) | |
titles.matrix.df <- as.data.frame(inspect(titles.matrix)) | |
yes.cols <- grepl(col.value, dat[,column]) | |
words.yes <- rowSums(titles.matrix.df[,yes.cols]) | |
words.no <- rowSums(titles.matrix.df[,!yes.cols]) | |
words.diff <- data.frame(words=names(words.yes), freq=words.yes+words.no, count.diff=words.yes-words.no) | |
spacing <- sapply(table(words.diff$count.diff), optimal.spacing) | |
words.df <- ddply(words.diff, .(count.diff), function(cw) { | |
cbind(cw, ypos=unlist(spacing[as.character(cw$count.diff[[1]])])) | |
}) | |
min.count <- pmin(-.1, min(words.df$count.diff)) | |
max.count <- pmax(.1, max(words.df$count.diff)) | |
wc <- ggplot(words.df, aes(count.diff, ypos, label=words, size=freq, colour=count.diff)) + | |
geom_text() + | |
scale_size(to=c(3,11), name='Word Frequency') + | |
scale_colour_gradient2(low='darkred', mid='black', high='darkblue', midpoint=0, legend=FALSE) + | |
scale_x_continuous('', breaks=c(min.count, 0, max.count), | |
labels=c('Less', 'Same', 'More')) + | |
scale_y_continuous('', breaks=c(0), labels='') + | |
coord_cartesian(xlim=c(min.count*1.2, max.count*1.2)) + | |
theme_bw() + | |
opts(panel.grid.major=theme_blank(),panel.grid.minor=theme_blank(), | |
title=title) | |
print(wc) | |
} | |
plots <- data.frame(column=c('DataScientist', 'Sector', 'Sector', 'Sector', | |
'Education', 'Education', 'Training', | |
'Training', 'Training', 'Training'), | |
col.value=c('Yes', 'Private', 'Public', 'Academic', | |
'Masters', 'Doctoral', 'Statistics', | |
'Machine Learning', 'Sciences', 'Business'), | |
title=c('Data Scientist = Yes', 'Private Sector', 'Public Sector', 'Academia', | |
'Masters Degree', 'PhD', 'Statistics Training', | |
'ML Training', 'Science Training', 'Business Training')) | |
row=1 | |
while(1){ | |
do.call(plot.function, as.list(plots[row, ])) | |
Sys.sleep(loop.time) | |
row = (row + 1) | |
if (row > nrow(plots)) row <- 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment