Created
November 30, 2017 18:41
-
-
Save HarlanH/99b82a35d3190d879c0f6b9abeaf7032 to your computer and use it in GitHub Desktop.
R Flexdashboard for dbt production metrics
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- | |
title: "dbt Metrics" | |
output: | |
flexdashboard::flex_dashboard: | |
orientation: rows | |
--- | |
<!-- | |
If dbt is being run on an AWS server with logs being pulled into Cloudwatch, | |
this script generates a static dashboard of this history of your production dbt | |
runs. | |
Requirements: | |
* R with the packages in the `setup` block | |
* The AWS CLI installed and configured to access your systems | |
* Change the constants in `setup` | |
* Assumes you use model category prefixes of `stg`, `dim`, and `act` -- if you don't, | |
you'll probably need to change some code. | |
Author: | |
Harlan Harris, [email protected] | |
--> | |
<!-- | |
MIT License | |
Copyright (c) 2017 Harlan D. Harris | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
--> | |
```{r setup, include=FALSE} | |
library(flexdashboard) | |
library(jsonlite) | |
library(magrittr) | |
library(tidyverse) | |
library(stringr) | |
library(forcats) | |
library(lubridate) | |
library(plotly) | |
library(glue) | |
usecache=FALSE # possibly set to TRUE for development | |
knitr::opts_chunk$set(fig.height=2.5, fig.width=5) | |
aws_path = "~/.local/bin/aws" | |
log_group_name = "/aws/batch/job" | |
log_stream_name_prefix = "run_dbt" | |
max_items = 10 | |
contact = "[email protected]" | |
``` | |
```{r get_files, cache=usecache} | |
base_get_files <- glue("{aws_path} logs describe-log-streams --log-group-name {log_group_name} --log-stream-name-prefix {log_stream_name_prefix} --max-items {max_items}") | |
get_files_next <- NA | |
get_files_df <- data_frame() | |
repeat { | |
get_files_cmd <- if (!is.na(get_files_next)) { | |
paste(base_get_files, glue("--starting-token {get_files_next}")) | |
} else base_get_files | |
ret <- system(get_files_cmd, intern=TRUE) %>% paste %>% fromJSON | |
get_files_df <- bind_rows(get_files_df, ret$logStreams) | |
if (!is.null(ret$NextToken)) { | |
#print(ret$NextToken) | |
get_files_next <- ret$NextToken | |
} else break | |
} | |
get_files_df %<>% | |
mutate(creationTime = as.POSIXct(creationTime/1000, origin = "1970-01-01")) %>% # ms since origin! | |
select(creationTime, logStreamName, storedBytes) %>% | |
arrange(creationTime) | |
``` | |
```{r get_records, cache=usecache} | |
# now, for each of these streams, get the logs and parse | |
#' @param js one JSON object | |
parse_one_log <- function(df) { | |
found_row <- str_subset(df$message, "^Found") | |
start_rows <- str_subset(df$message, "START") | |
finish_row <- str_subset(df$message, "Finished") | |
done_row <- str_subset(df$message, "Done") | |
if (length(found_row) == 0 || length(start_rows) == 0 || length(finish_row) == 0 || length(done_row) == 0) | |
return(data_frame()) | |
num_models <- str_match(found_row, "([0-9]+) models")[1,2] | |
num_tests <- str_match(found_row, "([0-9]+) tests")[1,2] | |
prefixes <- str_match(start_rows, "\\.([^_]+)_")[,2] | |
num_stg_models <- sum(prefixes == "stg") | |
num_dim_models <- sum(prefixes == "dim") | |
num_act_models <- sum(prefixes == "act") | |
run_time_sec <- str_match(finish_row, "in ([0-9.]+)s")[1,2] | |
num_view_models <- str_match(finish_row, "([0-9]+) view models")[1,2] | |
num_table_models <- str_match(finish_row, "([0-9]+) table models")[1,2] | |
num_incr_models <- str_match(finish_row, "([0-9]+) incremental models")[1,2] | |
num_pass_models <- str_match(done_row, "PASS=([0-9]+)")[1,2] | |
num_error_models <- str_match(done_row, "ERROR=([0-9]+)")[1,2] | |
num_skip_models <- str_match(done_row, "SKIP=([0-9]+)")[1,2] | |
data_frame(num_models, num_tests, num_stg_models, num_dim_models, num_act_models, | |
run_time_sec, num_view_models, num_table_models, num_incr_models, | |
num_pass_models, num_error_models, num_skip_models) %>% mutate_all(as.numeric) | |
} | |
get_stream_base <- "{aws_path} logs get-log-events --log-group-name {log_group_name} --log-stream-name" | |
logs <- get_files_df %>% # this takes a few minutes, mostly AWS query time | |
group_by(logStreamName) %>% | |
do({ | |
get_stream_cmd <- paste(get_stream_base, .$logStreamName) | |
#print(get_stream_cmd) | |
ret <- system(get_stream_cmd, intern = TRUE) %>% paste %>% fromJSON | |
bind_cols(., parse_one_log(ret$events)) | |
}) %>% ungroup | |
# NOTE! Gets test and product script output too! | |
``` | |
# Metrics | |
Row {data-height=650} | |
----------------------------------------------------------------------- | |
### Outcome | |
```{r success} | |
filter(logs, !is.na(num_models)) %>% | |
select(creationTime, Pass=num_pass_models, Error=num_error_models, Skip=num_skip_models) %>% | |
gather(metric, value, -creationTime) %>% | |
ggplot(aes(creationTime, value, fill=metric)) + | |
geom_area() + | |
xlab("") + | |
ylab("") + | |
scale_fill_manual("", values = c("red", "grey50", "orange")) | |
``` | |
### Time | |
```{r time} | |
filter(logs, !is.na(num_models)) %>% | |
select(creationTime, run_time_sec, num_error_models) %>% | |
mutate(any_errors=num_error_models > 0, | |
run_time_sec=pmin(run_time_sec, 9*60*60)) %>% | |
ggplot(aes(creationTime, run_time_sec/(60*60))) + | |
geom_line() + | |
geom_point(aes(color=any_errors), size=.5) + | |
xlab("") + | |
scale_y_continuous("Hours (truncated at 9)", breaks=0:12) + | |
scale_color_manual("Any Errors", values=c("grey30", "red")) | |
``` | |
Row {data-height=650} | |
----------------------------------------------------------------------- | |
### Semantic Type | |
```{r Level} | |
filter(logs, !is.na(num_models), num_error_models==0) %>% | |
select(creationTime, Staging=num_stg_models, Dimension=num_dim_models, Activity=num_act_models, num_models) %>% | |
mutate(Other = num_models - (Staging + Dimension+Activity)) %>% | |
select(-num_models) %>% | |
gather(metric, value, -creationTime) %>% | |
ggplot(aes(creationTime, value, fill=metric)) + | |
geom_area() + | |
xlab("") + | |
ylab("") + | |
scale_fill_discrete("") | |
``` | |
> Runs resulting in errors excluded. Level defined by table prefix. | |
### Logical Type | |
```{r type} | |
filter(logs, !is.na(num_models), num_error_models==0) %>% | |
select(creationTime, Views=num_view_models, Table=num_table_models, Incremental=num_incr_models) %>% | |
gather(metric, value, -creationTime) %>% | |
ggplot(aes(creationTime, value, fill=metric)) + | |
geom_area() + | |
xlab("") + | |
ylab("") + | |
scale_fill_discrete("") | |
``` | |
> Runs resulting in errors excluded. | |
# About | |
* Generated `r now()`. Contact `r contact` with questions or suggestions. | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment