-
-
Save Harold2017/c40c216ba233f938d337ad26da802726 to your computer and use it in GitHub Desktop.
Fitting 3D points to a plane or a line
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
template<class Vector3> | |
std::pair<Vector3, Vector3> best_plane_from_points(const std::vector<Vector3> & c) | |
{ | |
// copy coordinates to matrix in Eigen format | |
size_t num_atoms = c.size(); | |
Eigen::Matrix< Vector3::Scalar, Eigen::Dynamic, Eigen::Dynamic > coord(3, num_atoms); | |
for (size_t i = 0; i < num_atoms; ++i) coord.col(i) = c[i]; | |
// calculate centroid | |
Vector3 centroid(coord.row(0).mean(), coord.row(1).mean(), coord.row(2).mean()); | |
// subtract centroid | |
coord.row(0).array() -= centroid(0); coord.row(1).array() -= centroid(1); coord.row(2).array() -= centroid(2); | |
// we only need the left-singular matrix here | |
// http://math.stackexchange.com/questions/99299/best-fitting-plane-given-a-set-of-points | |
auto svd = coord.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV); | |
Vector3 plane_normal = svd.matrixU().rightCols<1>(); | |
return std::make_pair(centroid, plane_normal); | |
} | |
template<class Vector3> | |
std::pair < Vector3, Vector3 > best_line_from_points(const std::vector<Vector3> & c) | |
{ | |
// copy coordinates to matrix in Eigen format | |
size_t num_atoms = c.size(); | |
Eigen::Matrix< Vector3::Scalar, Eigen::Dynamic, Eigen::Dynamic > centers(num_atoms, 3); | |
for (size_t i = 0; i < num_atoms; ++i) centers.row(i) = c[i]; | |
Vector3 origin = centers.colwise().mean(); | |
Eigen::MatrixXd centered = centers.rowwise() - origin.transpose(); | |
Eigen::MatrixXd cov = centered.adjoint() * centered; | |
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eig(cov); | |
Vector3 axis = eig.eigenvectors().col(2).normalized(); | |
return std::make_pair(origin, axis); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment