Created
March 3, 2018 12:47
-
-
Save HassankSalim/a7c536121d1b924422230f4f47504304 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python2 | |
# -*- coding: utf-8 -*- | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from src.network import Conv2d, FC | |
class CMTL(nn.Module): | |
''' | |
Implementation of CNN-based Cascaded Multi-task Learning of High-level Prior and Density | |
Estimation for Crowd Counting (Sindagi et al.) | |
''' | |
def __init__(self, bn=False, num_classes=10): | |
super(CMTL, self).__init__() | |
self.num_classes = num_classes | |
self.base_layer = nn.Sequential(Conv2d( 1, 16, 9, same_padding=True, NL='prelu', bn=bn), | |
Conv2d(16, 32, 7, same_padding=True, NL='prelu', bn=bn)) | |
self.hl_prior_1 = nn.Sequential(Conv2d( 32, 16, 9, same_padding=True, NL='prelu', bn=bn), | |
nn.MaxPool2d(2), | |
Conv2d(16, 32, 7, same_padding=True, NL='prelu', bn=bn), | |
nn.MaxPool2d(2), | |
Conv2d(32, 16, 7, same_padding=True, NL='prelu', bn=bn), | |
Conv2d(16, 8, 7, same_padding=True, NL='prelu', bn=bn)) | |
self.hl_prior_2 = nn.Sequential(nn.AdaptiveMaxPool2d((32,32)), | |
Conv2d( 8, 4, 1, same_padding=True, NL='prelu', bn=bn)) | |
self.hl_prior_fc1 = FC(4*1024,512, NL='prelu') | |
self.hl_prior_fc2 = FC(512,256, NL='prelu') | |
self.hl_prior_fc3 = FC(256, self.num_classes, NL='prelu') | |
self.de_stage_1 = nn.Sequential(Conv2d( 32, 20, 7, same_padding=True, NL='prelu', bn=bn), | |
nn.MaxPool2d(2), | |
Conv2d(20, 40, 5, same_padding=True, NL='prelu', bn=bn), | |
nn.MaxPool2d(2), | |
Conv2d(40, 20, 5, same_padding=True, NL='prelu', bn=bn), | |
Conv2d(20, 10, 5, same_padding=True, NL='prelu', bn=bn)) | |
self.de_stage_2 = nn.Sequential(Conv2d( 18, 24, 3, same_padding=True, NL='prelu', bn=bn), | |
Conv2d( 24, 32, 3, same_padding=True, NL='prelu', bn=bn), | |
nn.ConvTranspose2d(32,16,4,stride=2,padding=1,output_padding=0,bias=True), | |
nn.PReLU(), | |
nn.ConvTranspose2d(16,8,4,stride=2,padding=1,output_padding=0,bias=True), | |
nn.PReLU(), | |
Conv2d(8, 1, 1, same_padding=True, NL='relu', bn=bn)) | |
def forward(self, im_data): | |
x_base = self.base_layer(im_data) | |
x_hlp1 = self.hl_prior_1(x_base) | |
x_hlp2 = self.hl_prior_2(x_hlp1) | |
x_hlp2 = x_hlp2.view(x_hlp2.size()[0], -1) | |
x_hlp = self.hl_prior_fc1(x_hlp2) | |
x_hlp = F.dropout(x_hlp, training=self.training) | |
x_hlp = self.hl_prior_fc2(x_hlp) | |
x_hlp = F.dropout(x_hlp, training=self.training) | |
x_cls = self.hl_prior_fc3(x_hlp) | |
x_den = self.de_stage_1(x_base) | |
x_den = torch.cat((x_hlp1,x_den),1) | |
x_den = self.de_stage_2(x_den) | |
return x_den, x_cls |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment