Last active
April 27, 2023 22:02
-
-
Save Helw150/d4303c7c91406eca9a6c1d28b3713dbc to your computer and use it in GitHub Desktop.
OT TADA Loss
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import List, Optional, Tuple, Union | |
from torchtyping import TensorType | |
from transformers.adapters.modeling import Adapter | |
from transformers.adapters import ( | |
BartAdapterModel, | |
RobertaAdapterModel, | |
BertAdapterModel, | |
AdapterConfig, | |
) | |
import torch | |
from torch import nn | |
from geomloss import SamplesLoss | |
class AlignmentMixin(nn.Module): | |
def __init__(self, config): | |
config.hidden_dropout_prob = 0.0 | |
config.attention_probs_dropout_prob = 0.0 | |
super().__init__(config) | |
self.earth_mover_loss = SamplesLoss(loss="sinkhorn", p=2) | |
@torch.no_grad() | |
def produce_original_embeddings( | |
self, | |
input_ids: TensorType["batch", "seq_len"], | |
attention_mask: TensorType["batch", "seq_len"], | |
token_type_ids: Optional[TensorType["batch", "seq_len"]] = None, | |
position_ids: Optional[TensorType["batch", "seq_len"]] = None, | |
head_mask: Optional[TensorType["layers", "heads"]] = None, | |
) -> TensorType["batch", "seq_len", "hidden_size"]: | |
self.train(False) | |
outputs = super().forward( | |
input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
output_attentions=False, | |
output_hidden_states=True, | |
return_dict=True, | |
) | |
if "last_hidden_state" in outputs: | |
hidden_mat = outputs.last_hidden_state | |
else: | |
hidden_mat = outputs.encoder_last_hidden_state | |
self.train(True) | |
return outputs.last_hidden_state, attention_mask | |
def get_weight(self, mask): | |
probs = mask / mask.sum(1).reshape(-1, 1) | |
return probs | |
def forward( | |
self, | |
input_ids: TensorType["batch", "seq_len"], | |
attention_mask: TensorType["batch", "seq_len"], | |
original_embedding: Optional[ | |
TensorType["batch", "layers", "hidden_size"] | |
] = None, | |
original_mask: TensorType["batch", "seq_len"], | |
token_type_ids: Optional[TensorType["batch", "seq_len"]] = None, | |
position_ids: Optional[TensorType["batch", "seq_len"]] = None, | |
head_mask: Optional[TensorType["layers", "heads"]] = None, | |
**kwargs | |
): | |
if type(original_embedding) != type(None): | |
outputs = super().forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask, | |
output_attentions=False, | |
output_hidden_states=True, | |
return_dict=True, | |
) | |
if "last_hidden_state" in outputs: | |
hidden_mat = outputs.last_hidden_state | |
else: | |
hidden_mat = outputs.encoder_last_hidden_state | |
alignment_loss = self.earth_mover_loss( | |
self.get_weight(attention_mask), hidden_mat, self.get_weight(original_mask), original_embeddings | |
) | |
return (alignment_loss,) | |
class BartAdapterModelForAlignment(AlignmentMixin, BartAdapterModel): | |
def __init__(self, config): | |
config.dropout = 0.0 | |
config.activation_dropout = 0.0 | |
config.attention_dropout = 0.0 | |
config.classifier_dropout = 0.0 | |
super().__init__(config) | |
class RobertaAdapterModelForAlignment(AlignmentMixin, RobertaAdapterModel): | |
def __init__(self, config): | |
config.hidden_dropout_prob = 0.0 | |
config.attention_probs_dropout_prob = 0.0 | |
super().__init__(config) | |
class BertAdapterModelForAlignment(AlignmentMixin, BertAdapterModel): | |
def __init__(self, config): | |
config.hidden_dropout_prob = 0.0 | |
config.attention_probs_dropout_prob = 0.0 | |
super().__init__(config) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment