Last active
March 8, 2024 18:31
-
-
Save HemachandranD/2d985b63e947182c5a5740866207929f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Databricks notebook source | |
import os | |
import sys | |
import requests | |
import json | |
notebook_path = '/Workspace/' + os.path.dirname(dbutils.notebook.entry_point.getDbutils().notebook().getContext().notebookPath().get()) | |
# COMMAND ---------- | |
# Set the name of the MLflow endpoint | |
endpoint_name = dbutils.jobs.taskValues.get("Train", "model_name", debugValue="") | |
# Name of the registered MLflow model | |
model_name = dbutils.jobs.taskValues.get("Train", "model_name", debugValue="") | |
# Get the latest version of the MLflow model | |
model_version = dbutils.jobs.taskValues.get("Train", "model_version", debugValue="") | |
# Specify the type of compute (CPU, GPU_SMALL, GPU_MEDIUM, etc.) | |
workload_type = "CPU" | |
# Specify the scale-out size of compute (Small, Medium, Large, etc.) | |
workload_size = "Small" | |
# Get the API endpoint and token for the current notebook context | |
API_ROOT = dbutils.notebook.entry_point.getDbutils().notebook().getContext().apiUrl().get() | |
API_TOKEN = dbutils.notebook.entry_point.getDbutils().notebook().getContext().apiToken().get() | |
# COMMAND ---------- | |
data={ | |
"name": endpoint_name, | |
"config": { | |
"served_entities": [ | |
{ | |
"name": f"{model_name}-{model_version}", | |
"entity_name": model_name, | |
"entity_version": model_version, | |
"workload_size": workload_size, | |
"scale_to_zero_enabled": True | |
} | |
] | |
}, | |
"tags": [ | |
{ | |
"key": "team", | |
"value": "MLOps" | |
} | |
] | |
} | |
headers = {"Context-Type": "text/json", "Authorization": f"Bearer {API_TOKEN}"} | |
response = requests.post( | |
url=f"{API_ROOT}/api/2.0/serving-endpoints", json=data, headers=headers | |
) | |
print(json.dumps(response.json(), indent=4)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment