Last active
October 11, 2019 15:20
-
-
Save HenryJia/b6301c20bd29fce64c8b09c89e74d77c to your computer and use it in GitHub Desktop.
t-distributed Stochatic Neightbour Embedding on MNIST
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Based on https://scipy-lectures.org/packages/scikit-learn/auto_examples/plot_tsne.html | |
# tSNE: https://en.wikipedia.org/wiki/T-distributed_stochastic_neighbor_embedding | |
# MNIST Dataset: http://yann.lecun.com/exdb/mnist/ | |
import struct | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.manifold import TSNE | |
# Fix the random seed | |
np.random.seed(1234) | |
# Load the MNIST Dataset | |
with open('t10k-labels-idx1-ubyte', 'rb') as f_labels: | |
magic, n = struct.unpack('>II', f_labels.read(8)) | |
y = np.fromfile(f_labels, dtype=np.uint8) | |
with open('t10k-images-idx3-ubyte', 'rb') as f_img: | |
magic, num, rows, cols = struct.unpack('>IIII', f_img.read(16)) | |
x = np.fromfile(f_img, dtype=np.uint8) | |
# Generate a random permutation to shuffle our dataset | |
perm = np.random.permutation(y.shape[0]) | |
# Take a subsample of 500 images | |
x = x.reshape((10000, 28 * 28))[perm][:500] | |
y = y[perm][:500] | |
print(x.shape, y.shape) | |
# Run tSNE | |
# Just use scikit-learn beacause I'm efficient/lazy | |
tsne = TSNE(n_components=2, random_state=0) | |
x_2d = tsne.fit_transform(x) | |
# Plot it | |
plt.figure(figsize=(10, 10)) | |
colors = 'r', 'g', 'b', 'c', 'm', 'y', 'k', 'pink', 'orange', 'purple' | |
for i, (c, label) in enumerate(zip(colors, np.unique(y))): | |
plt.scatter(x_2d[y == i, 0], x_2d[y == i, 1], c=c, label=label) | |
plt.legend() | |
plt.savefig('tsne_mnist.png') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment