-
-
Save Hermann-SW/1218d13dc7fb95aa90687ad8baa06787 to your computer and use it in GitHub Desktop.
// | |
// Developemnt of this gist is stopped, no further updates. | |
// | |
// This is the equivalent of this gist in new RR repo: | |
// https://github.com/Hermann-SW/RR/blob/main/tsp/greedy.cpp | |
// | |
// Code is split up, and a loader was added allowing for differnt problems. | |
// In addition that repo has 111 TSP problems with 108 corresponding | |
// optimal tours. | |
/* | |
hermann@7950x:~/RR/tsp$ make clean | |
rm -f load_test greedy | |
hermann@7950x:~/RR/tsp$ make greedy | |
g++ -O3 -std=c++20 -Wall -Wextra -pedantic greedy.cpp -o greedy -lstdc++ -lm | |
hermann@7950x:~/RR/tsp$ | |
hermann@7950x:~/RR/tsp$ perf stat -e cycles,task-clock ./greedy 205 ../data/tsp/pcb442 | |
50933 local minimum found (after 100,000 greedy mutations) | |
5854 ms (only recreate) | |
50778 global minimum | |
Performance counter stats for './greedy 205 ../data/tsp/pcb442': | |
37,708,902,114 cycles # 5.493 GHz | |
6,864.89 msec task-clock # 1.000 CPUs utilized | |
6.865929950 seconds time elapsed | |
6.864255000 seconds user | |
0.001000000 seconds sys | |
hermann@7950x:~/RR/tsp$ | |
*/ | |
/* | |
TSP Ruin and Recreate greedy implementation with random+sequential+radial ruins: | |
https://www.semanticscholar.org/paper/Record-Breaking-Optimization-Results-Using-the-Ruin-Schrimpf-Schneider/4f80e70e51e368858c3df0787f05c3aa2b9650b4 | |
c++ -O3 -std=c++17 -Wall -Wextra -pedantic pcb442.cpp -o pcb442 -lstdc++ -lm | |
(tested with g++ and clang++) | |
for tour display | |
- append compiler flags "-Dezxdisp -lezx -lX11" | |
- after "make install" of ezxdisp repo first: | |
https://github.com/Hermann-SW/ezxdisp?tab=readme-ov-file#support-for-c--use-in-ide | |
(left mouse click continues to next accepted mutation and updates display; repeat) | |
cpplint --filter=-legal/copyright,-runtime/references pcb442.cpp | |
cppcheck --enable=all --suppress=missingIncludeSystem pcb442.cpp | |
*/ | |
#include <sys/time.h> | |
auto _sum = 0; | |
struct timeval _tv0; | |
#define _tim gettimeofday(&_tv0, NULL) | |
#define _start (_tim, _sum -= (1000000*_tv0.tv_sec + _tv0.tv_usec)); | |
#define _stop (_tim, _sum += (1000000*_tv0.tv_sec + _tv0.tv_usec)); | |
#ifdef ezxdisp | |
#include <unistd.h> | |
#include <ezxdisp.h> | |
#endif | |
#include <sstream> | |
#include <algorithm> | |
#include <iostream> | |
#include <cmath> | |
#include <cassert> | |
#include <vector> | |
#include <list> | |
std::string i2s(int x) { std::stringstream s2; s2 << x; return s2.str(); } | |
template <typename C> | |
[[maybe_unused]] void print(const C& L) { | |
std::for_each(L.begin(), L.end(), [](const typename C::value_type i) { | |
std::cout << i << " "; | |
}); | |
std::cout << '\n'; | |
} | |
template <typename urn> | |
typename urn::value_type edraw(urn& U) { | |
auto r = random() % U.size(); | |
typename urn::value_type ret = U[r]; | |
U[r] = U.back(); | |
U.pop_back(); | |
return ret; | |
} | |
template <typename val, int N> | |
class random_access_list { | |
std::list<val> L; | |
public: | |
typedef typename std::list<val>::iterator iterator; | |
iterator A[N]; | |
void init() { | |
L.clear(); | |
for (int i = 0; i < N; ++i) A[i] = L.end(); | |
} | |
iterator& operator[](std::size_t i) { return A[i]; } | |
void sort() { L.sort(); } | |
void push_back(val& v ) { L.push_back(v); A[v] = --L.end(); } | |
iterator insert(iterator it, val& v ) { return A[v] = L.insert(it, v); } | |
iterator erase(iterator it) { A[*it] = L.end(); return L.erase(it); } | |
iterator erase(int i) { | |
iterator it = A[i]; A[i] = L.end(); return L.erase(it); | |
} | |
iterator begin() { return L.begin(); } | |
iterator end() { return L.end(); } | |
bool empty() { return L.empty(); } | |
val& back() { return L.back(); } | |
size_t size() { return L.size(); } | |
}; | |
template <typename config, typename urn> | |
class pcb442 { | |
public: | |
static const int N = 442; // config::N; | |
const double siz, ran, seq, rad; | |
std::string last; | |
pcb442(double _siz, double _ran, double _seq, double _rad) : | |
siz(_siz), ran(_ran), seq(_seq), rad(_rad) { | |
assert(siz >= 0.0 && siz <= 1.0); | |
assert(ran+seq+rad == 1.0); | |
assert(ran >= 0.0 && seq >= 0.0 && rad >= 0.0); | |
init_dist(); | |
} | |
int cost(config& C) { | |
int cost = 0; | |
int prev = C.empty() ? -1 : C.back(); | |
std::for_each(C.begin(), C.end(), [this, &cost, &prev](const int c) { | |
cost += D[prev][c]; prev = c; | |
}); | |
return cost; | |
} | |
void init(config &C, std::pair<urn, urn> &Us) { | |
C.init(); | |
Us.first.clear(); | |
Us.second.clear(); | |
for (int i = 0; i < N; ++i) Us.first.push_back(i); | |
} | |
void RR_all(config &C, std::pair<urn, urn> &Us) { | |
init(C, Us); | |
recreate(C, Us); | |
} | |
int draw_rad(config& C, int size, std::pair<urn, urn>& Us) { | |
auto center = random() % C.size(); | |
last = "rad(" + i2s(center) + "," + i2s(size) + ")"; | |
Us.first.clear(); | |
std::for_each_n(rad_nxt[center].begin(), size, [&C, &Us](auto& c) { | |
C.erase(c); | |
Us.first.push_back(c); | |
}); | |
return center; | |
} | |
int draw_seq(config& C, int size, std::pair<urn, urn>& Us) { | |
auto start = random() % C.size(); | |
last = "seq(" + i2s(start) + "," + i2s(size) + ")"; | |
typename config::iterator it = C[start]; | |
int ret = *it; | |
while (size-- > 0 && it != C.end()) { | |
int c = *it; | |
it = C.erase(it); | |
Us.first.push_back(c); | |
} | |
it = C.begin(); | |
while (size-- > 0) { | |
int c = *it; | |
it = C.erase(it); | |
Us.first.push_back(c); | |
} | |
return -1-ret; | |
} | |
int draw_ran(config& C, int size, | |
std::pair<urn, urn>& Us) { | |
assert(Us.first.size() == 0); | |
assert(Us.second.size() == N); | |
last = "ran(" + i2s(size) + ")"; | |
for (; size > 0; --size) { | |
int r = edraw(Us.second); | |
Us.first.push_back(r); | |
C.erase(r); | |
} | |
std::for_each(Us.first.begin(), Us.first.end(), [&Us](int c) { | |
Us.second.push_back(c); | |
}); | |
return std::numeric_limits<int>::max(); | |
} | |
int draw(config& C, int size, | |
std::pair<urn, urn>& Us) { | |
double d = drand48(); | |
if (d < ran) return draw_ran(C, size, Us); | |
else if (d < ran+seq) return draw_seq(C, size, Us); | |
else return draw_rad(C, size, Us); | |
} | |
/* | |
returns | |
- std::numeric_limits<int>::max() for ran | |
- center city for rad | |
- -(1+start) city for seq | |
*/ | |
int ruin(config& C, std::pair<urn, urn>& Us) { | |
return draw(C, ceil(drand48() * (siz * N)), Us); | |
} | |
void recreate(config& C, std::pair<urn, urn>& Us) { | |
while (!Us.first.empty()) { | |
int c = edraw(Us.first); | |
assert(C[c] == C.end()); | |
_start | |
int mincost = std::numeric_limits<int>::max(); | |
int prev = C.empty() ? -1 : C.back(); | |
typename config::iterator best = C.end(); | |
for (typename config::iterator it = C.begin(); it != C.end(); ++it) { | |
int cur = *it; | |
int ncost = D[prev][c] + D[c][cur] - D[prev][cur]; | |
if (ncost < mincost) { | |
best = it; | |
mincost = ncost; | |
} | |
prev = cur; | |
} | |
_stop | |
C.insert(best, c); | |
} | |
} | |
int D[N][N]; // distance matrix | |
struct { | |
int* vi; | |
bool operator()(int a, int b) { | |
return vi[a] < vi[b]; | |
} | |
} Dless; | |
std::vector<int> rad_nxt[N]; // radial next | |
void init_dist() { | |
for (int from = 0; from < N; ++from) { | |
rad_nxt[from].clear(); | |
for (int to = 0; to < N; ++to) { | |
D[from][to] = dist(from, to); | |
rad_nxt[from].push_back(to); | |
} | |
} | |
for (int from = 0; from < N; ++from) { | |
Dless.vi = D[from]; | |
std::sort(rad_nxt[from].begin(), rad_nxt[from].end(), Dless); | |
} | |
} | |
inline int nint(double d) { return static_cast<int>(0.5 + d); } | |
// http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp95.pdf#page=6 | |
// $ grep EDGE_WEIGHT_TYPE pcb442.tsp | |
// EDGE_WEIGHT_TYPE : EUC_2D | |
// $ | |
int dist(int from, int to) { | |
double xd = C[from][0] - C[to][0]; | |
double yd = C[from][1] - C[to][1]; | |
return nint(sqrt(xd*xd + yd*yd)); | |
} | |
// http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/pcb442.tsp.gz | |
const double C[N][2]={ | |
{2.00000e+02, 4.00000e+02}, | |
{2.00000e+02, 5.00000e+02}, | |
{2.00000e+02, 6.00000e+02}, | |
{2.00000e+02, 7.00000e+02}, | |
{2.00000e+02, 8.00000e+02}, | |
{2.00000e+02, 9.00000e+02}, | |
{2.00000e+02, 1.00000e+03}, | |
{2.00000e+02, 1.10000e+03}, | |
{2.00000e+02, 1.20000e+03}, | |
{2.00000e+02, 1.30000e+03}, | |
{2.00000e+02, 1.40000e+03}, | |
{2.00000e+02, 1.50000e+03}, | |
{2.00000e+02, 1.60000e+03}, | |
{2.00000e+02, 1.70000e+03}, | |
{2.00000e+02, 1.80000e+03}, | |
{2.00000e+02, 1.90000e+03}, | |
{2.00000e+02, 2.00000e+03}, | |
{2.00000e+02, 2.10000e+03}, | |
{2.00000e+02, 2.20000e+03}, | |
{2.00000e+02, 2.30000e+03}, | |
{2.00000e+02, 2.40000e+03}, | |
{2.00000e+02, 2.50000e+03}, | |
{2.00000e+02, 2.60000e+03}, | |
{2.00000e+02, 2.70000e+03}, | |
{2.00000e+02, 2.80000e+03}, | |
{2.00000e+02, 2.90000e+03}, | |
{2.00000e+02, 3.00000e+03}, | |
{2.00000e+02, 3.10000e+03}, | |
{2.00000e+02, 3.20000e+03}, | |
{2.00000e+02, 3.30000e+03}, | |
{2.00000e+02, 3.40000e+03}, | |
{2.00000e+02, 3.50000e+03}, | |
{2.00000e+02, 3.60000e+03}, | |
{3.00000e+02, 4.00000e+02}, | |
{3.00000e+02, 5.00000e+02}, | |
{3.00000e+02, 6.00000e+02}, | |
{3.00000e+02, 7.00000e+02}, | |
{3.00000e+02, 8.00000e+02}, | |
{3.00000e+02, 9.00000e+02}, | |
{3.00000e+02, 1.00000e+03}, | |
{3.00000e+02, 1.10000e+03}, | |
{3.00000e+02, 1.20000e+03}, | |
{3.00000e+02, 1.30000e+03}, | |
{3.00000e+02, 1.40000e+03}, | |
{3.00000e+02, 1.50000e+03}, | |
{3.00000e+02, 1.60000e+03}, | |
{3.00000e+02, 1.70000e+03}, | |
{3.00000e+02, 1.80000e+03}, | |
{3.00000e+02, 1.90000e+03}, | |
{3.00000e+02, 2.00000e+03}, | |
{3.00000e+02, 2.10000e+03}, | |
{3.00000e+02, 2.20000e+03}, | |
{3.00000e+02, 2.30000e+03}, | |
{3.00000e+02, 2.40000e+03}, | |
{3.00000e+02, 2.50000e+03}, | |
{3.00000e+02, 2.60000e+03}, | |
{3.00000e+02, 2.70000e+03}, | |
{3.00000e+02, 2.80000e+03}, | |
{3.00000e+02, 2.90000e+03}, | |
{3.00000e+02, 3.00000e+03}, | |
{3.00000e+02, 3.10000e+03}, | |
{3.00000e+02, 3.20000e+03}, | |
{3.00000e+02, 3.30000e+03}, | |
{3.00000e+02, 3.40000e+03}, | |
{3.00000e+02, 3.50000e+03}, | |
{4.00000e+02, 4.00000e+02}, | |
{4.00000e+02, 5.00000e+02}, | |
{4.00000e+02, 6.00000e+02}, | |
{4.00000e+02, 7.00000e+02}, | |
{4.00000e+02, 8.00000e+02}, | |
{4.00000e+02, 9.00000e+02}, | |
{4.00000e+02, 1.00000e+03}, | |
{4.00000e+02, 1.10000e+03}, | |
{4.00000e+02, 1.20000e+03}, | |
{4.00000e+02, 1.30000e+03}, | |
{4.00000e+02, 1.40000e+03}, | |
{4.00000e+02, 1.50000e+03}, | |
{4.00000e+02, 1.60000e+03}, | |
{4.00000e+02, 1.70000e+03}, | |
{4.00000e+02, 1.80000e+03}, | |
{4.00000e+02, 1.90000e+03}, | |
{4.00000e+02, 2.00000e+03}, | |
{4.00000e+02, 2.10000e+03}, | |
{4.00000e+02, 2.20000e+03}, | |
{4.00000e+02, 2.30000e+03}, | |
{4.00000e+02, 2.40000e+03}, | |
{4.00000e+02, 2.50000e+03}, | |
{4.00000e+02, 2.60000e+03}, | |
{4.00000e+02, 2.70000e+03}, | |
{4.00000e+02, 2.80000e+03}, | |
{4.00000e+02, 2.90000e+03}, | |
{4.00000e+02, 3.00000e+03}, | |
{4.00000e+02, 3.10000e+03}, | |
{4.00000e+02, 3.20000e+03}, | |
{4.00000e+02, 3.30000e+03}, | |
{4.00000e+02, 3.40000e+03}, | |
{4.00000e+02, 3.50000e+03}, | |
{4.00000e+02, 3.60000e+03}, | |
{5.00000e+02, 1.50000e+03}, | |
{5.00000e+02, 1.82900e+03}, | |
{5.00000e+02, 3.10000e+03}, | |
{6.00000e+02, 4.00000e+02}, | |
{7.00000e+02, 3.00000e+02}, | |
{7.00000e+02, 6.00000e+02}, | |
{7.00000e+02, 1.50000e+03}, | |
{7.00000e+02, 1.60000e+03}, | |
{7.00000e+02, 1.80000e+03}, | |
{7.00000e+02, 2.10000e+03}, | |
{7.00000e+02, 2.40000e+03}, | |
{7.00000e+02, 2.70000e+03}, | |
{7.00000e+02, 3.00000e+03}, | |
{7.00000e+02, 3.30000e+03}, | |
{7.00000e+02, 3.60000e+03}, | |
{8.00000e+02, 3.00000e+02}, | |
{8.00000e+02, 6.00000e+02}, | |
{8.00000e+02, 1.03000e+03}, | |
{8.00000e+02, 1.50000e+03}, | |
{8.00000e+02, 1.80000e+03}, | |
{8.00000e+02, 2.10000e+03}, | |
{8.00000e+02, 2.40000e+03}, | |
{8.00000e+02, 2.60000e+03}, | |
{8.00000e+02, 2.70000e+03}, | |
{8.00000e+02, 3.00000e+03}, | |
{8.00000e+02, 3.30000e+03}, | |
{8.00000e+02, 3.60000e+03}, | |
{9.00000e+02, 3.00000e+02}, | |
{9.00000e+02, 6.00000e+02}, | |
{9.00000e+02, 1.50000e+03}, | |
{9.00000e+02, 1.80000e+03}, | |
{9.00000e+02, 2.10000e+03}, | |
{9.00000e+02, 2.40000e+03}, | |
{9.00000e+02, 2.70000e+03}, | |
{9.00000e+02, 3.00000e+03}, | |
{9.00000e+02, 3.30000e+03}, | |
{9.00000e+02, 3.60000e+03}, | |
{1.00000e+03, 3.00000e+02}, | |
{1.00000e+03, 6.00000e+02}, | |
{1.00000e+03, 1.10000e+03}, | |
{1.00000e+03, 1.50000e+03}, | |
{1.00000e+03, 1.62900e+03}, | |
{1.00000e+03, 1.80000e+03}, | |
{1.00000e+03, 2.10000e+03}, | |
{1.00000e+03, 2.40000e+03}, | |
{1.00000e+03, 2.60000e+03}, | |
{1.00000e+03, 2.70000e+03}, | |
{1.00000e+03, 3.00000e+03}, | |
{1.00000e+03, 3.30000e+03}, | |
{1.00000e+03, 3.60000e+03}, | |
{1.10000e+03, 3.00000e+02}, | |
{1.10000e+03, 6.00000e+02}, | |
{1.10000e+03, 7.00000e+02}, | |
{1.10000e+03, 9.00000e+02}, | |
{1.10000e+03, 1.50000e+03}, | |
{1.10000e+03, 1.80000e+03}, | |
{1.10000e+03, 2.10000e+03}, | |
{1.10000e+03, 2.40000e+03}, | |
{1.10000e+03, 2.70000e+03}, | |
{1.10000e+03, 3.00000e+03}, | |
{1.10000e+03, 3.30000e+03}, | |
{1.10000e+03, 3.60000e+03}, | |
{1.20000e+03, 3.00000e+02}, | |
{1.20000e+03, 6.00000e+02}, | |
{1.20000e+03, 1.50000e+03}, | |
{1.20000e+03, 1.70000e+03}, | |
{1.20000e+03, 1.80000e+03}, | |
{1.20000e+03, 2.10000e+03}, | |
{1.20000e+03, 2.40000e+03}, | |
{1.20000e+03, 2.70000e+03}, | |
{1.20000e+03, 3.00000e+03}, | |
{1.20000e+03, 3.30000e+03}, | |
{1.20000e+03, 3.60000e+03}, | |
{1.30000e+03, 3.00000e+02}, | |
{1.30000e+03, 6.00000e+02}, | |
{1.30000e+03, 7.00000e+02}, | |
{1.30000e+03, 1.13000e+03}, | |
{1.30000e+03, 1.50000e+03}, | |
{1.30000e+03, 1.80000e+03}, | |
{1.30000e+03, 2.10000e+03}, | |
{1.30000e+03, 2.20000e+03}, | |
{1.30000e+03, 2.40000e+03}, | |
{1.30000e+03, 2.70000e+03}, | |
{1.30000e+03, 3.00000e+03}, | |
{1.30000e+03, 3.30000e+03}, | |
{1.30000e+03, 3.60000e+03}, | |
{1.40000e+03, 3.00000e+02}, | |
{1.40000e+03, 6.00000e+02}, | |
{1.40000e+03, 9.30000e+02}, | |
{1.40000e+03, 1.50000e+03}, | |
{1.40000e+03, 1.80000e+03}, | |
{1.40000e+03, 2.00000e+03}, | |
{1.40000e+03, 2.10000e+03}, | |
{1.40000e+03, 2.40000e+03}, | |
{1.40000e+03, 2.50000e+03}, | |
{1.40000e+03, 2.70000e+03}, | |
{1.40000e+03, 2.82000e+03}, | |
{1.40000e+03, 2.90000e+03}, | |
{1.40000e+03, 3.00000e+03}, | |
{1.40000e+03, 3.30000e+03}, | |
{1.40000e+03, 3.60000e+03}, | |
{1.50000e+03, 1.50000e+03}, | |
{1.50000e+03, 1.80000e+03}, | |
{1.50000e+03, 1.90000e+03}, | |
{1.50000e+03, 2.10000e+03}, | |
{1.50000e+03, 2.40000e+03}, | |
{1.50000e+03, 2.70000e+03}, | |
{1.50000e+03, 2.80000e+03}, | |
{1.50000e+03, 2.86000e+03}, | |
{1.50000e+03, 3.00000e+03}, | |
{1.50000e+03, 3.30000e+03}, | |
{1.50000e+03, 3.60000e+03}, | |
{1.60000e+03, 1.10000e+03}, | |
{1.60000e+03, 1.30000e+03}, | |
{1.60000e+03, 1.50000e+03}, | |
{1.60000e+03, 1.80000e+03}, | |
{1.60000e+03, 2.10000e+03}, | |
{1.60000e+03, 2.40000e+03}, | |
{1.60000e+03, 2.70000e+03}, | |
{1.60000e+03, 3.00000e+03}, | |
{1.60000e+03, 3.30000e+03}, | |
{1.60000e+03, 3.60000e+03}, | |
{1.70000e+03, 1.20000e+03}, | |
{1.70000e+03, 1.50000e+03}, | |
{1.70000e+03, 1.80000e+03}, | |
{1.70000e+03, 2.10000e+03}, | |
{1.70000e+03, 2.40000e+03}, | |
{1.70000e+03, 3.60000e+03}, | |
{1.80000e+03, 3.00000e+02}, | |
{1.80000e+03, 6.00000e+02}, | |
{1.80000e+03, 1.23000e+03}, | |
{1.80000e+03, 1.50000e+03}, | |
{1.80000e+03, 1.80000e+03}, | |
{1.80000e+03, 2.10000e+03}, | |
{1.80000e+03, 2.40000e+03}, | |
{1.90000e+03, 3.00000e+02}, | |
{1.90000e+03, 6.00000e+02}, | |
{1.90000e+03, 3.00000e+03}, | |
{1.90000e+03, 3.52000e+03}, | |
{2.00000e+03, 3.00000e+02}, | |
{2.00000e+03, 3.70000e+02}, | |
{2.00000e+03, 6.00000e+02}, | |
{2.00000e+03, 8.00000e+02}, | |
{2.00000e+03, 9.00000e+02}, | |
{2.00000e+03, 1.00000e+03}, | |
{2.00000e+03, 1.10000e+03}, | |
{2.00000e+03, 1.20000e+03}, | |
{2.00000e+03, 1.30000e+03}, | |
{2.00000e+03, 1.40000e+03}, | |
{2.00000e+03, 1.50000e+03}, | |
{2.00000e+03, 1.60000e+03}, | |
{2.00000e+03, 1.70000e+03}, | |
{2.00000e+03, 1.80000e+03}, | |
{2.00000e+03, 1.90000e+03}, | |
{2.00000e+03, 2.00000e+03}, | |
{2.00000e+03, 2.10000e+03}, | |
{2.00000e+03, 2.20000e+03}, | |
{2.00000e+03, 2.30000e+03}, | |
{2.00000e+03, 2.40000e+03}, | |
{2.00000e+03, 2.50000e+03}, | |
{2.00000e+03, 2.60000e+03}, | |
{2.00000e+03, 2.70000e+03}, | |
{2.00000e+03, 2.80000e+03}, | |
{2.00000e+03, 2.90000e+03}, | |
{2.00000e+03, 3.00000e+03}, | |
{2.00000e+03, 3.10000e+03}, | |
{2.00000e+03, 3.50000e+03}, | |
{2.10000e+03, 3.00000e+02}, | |
{2.10000e+03, 6.00000e+02}, | |
{2.10000e+03, 3.20000e+03}, | |
{2.20000e+03, 3.00000e+02}, | |
{2.20000e+03, 4.69000e+02}, | |
{2.20000e+03, 6.00000e+02}, | |
{2.20000e+03, 3.20000e+03}, | |
{2.30000e+03, 3.00000e+02}, | |
{2.30000e+03, 6.00000e+02}, | |
{2.30000e+03, 3.40000e+03}, | |
{2.40000e+03, 3.00000e+02}, | |
{2.40000e+03, 6.00000e+02}, | |
{2.40000e+03, 2.10000e+03}, | |
{2.50000e+03, 3.00000e+02}, | |
{2.50000e+03, 8.00000e+02}, | |
{2.60000e+03, 4.00000e+02}, | |
{2.60000e+03, 5.00000e+02}, | |
{2.60000e+03, 8.00000e+02}, | |
{2.60000e+03, 9.00000e+02}, | |
{2.60000e+03, 1.00000e+03}, | |
{2.60000e+03, 1.10000e+03}, | |
{2.60000e+03, 1.20000e+03}, | |
{2.60000e+03, 1.30000e+03}, | |
{2.60000e+03, 1.40000e+03}, | |
{2.60000e+03, 1.50000e+03}, | |
{2.60000e+03, 1.60000e+03}, | |
{2.60000e+03, 1.70000e+03}, | |
{2.60000e+03, 1.80000e+03}, | |
{2.60000e+03, 1.90000e+03}, | |
{2.60000e+03, 2.00000e+03}, | |
{2.60000e+03, 2.10000e+03}, | |
{2.60000e+03, 2.20000e+03}, | |
{2.60000e+03, 2.30000e+03}, | |
{2.60000e+03, 2.40000e+03}, | |
{2.60000e+03, 2.50000e+03}, | |
{2.60000e+03, 2.60000e+03}, | |
{2.60000e+03, 2.70000e+03}, | |
{2.60000e+03, 2.80000e+03}, | |
{2.60000e+03, 2.90000e+03}, | |
{2.60000e+03, 3.00000e+03}, | |
{2.60000e+03, 3.10000e+03}, | |
{2.60000e+03, 3.40000e+03}, | |
{2.70000e+03, 7.00000e+02}, | |
{2.70000e+03, 8.00000e+02}, | |
{2.70000e+03, 9.00000e+02}, | |
{2.70000e+03, 1.00000e+03}, | |
{2.70000e+03, 1.10000e+03}, | |
{2.70000e+03, 1.20000e+03}, | |
{2.70000e+03, 1.30000e+03}, | |
{2.70000e+03, 1.40000e+03}, | |
{2.70000e+03, 1.50000e+03}, | |
{2.70000e+03, 1.60000e+03}, | |
{2.70000e+03, 1.70000e+03}, | |
{2.70000e+03, 1.80000e+03}, | |
{2.70000e+03, 1.90000e+03}, | |
{2.70000e+03, 2.00000e+03}, | |
{2.70000e+03, 2.10000e+03}, | |
{2.70000e+03, 2.20000e+03}, | |
{2.70000e+03, 2.30000e+03}, | |
{2.70000e+03, 2.50000e+03}, | |
{2.70000e+03, 2.60000e+03}, | |
{2.70000e+03, 2.70000e+03}, | |
{2.70000e+03, 2.80000e+03}, | |
{2.70000e+03, 2.90000e+03}, | |
{2.70000e+03, 3.00000e+03}, | |
{2.70000e+03, 3.10000e+03}, | |
{2.70000e+03, 3.20000e+03}, | |
{2.70000e+03, 3.30000e+03}, | |
{2.70000e+03, 3.40000e+03}, | |
{2.70000e+03, 3.50000e+03}, | |
{2.70000e+03, 3.60000e+03}, | |
{2.70000e+03, 3.70000e+03}, | |
{2.70000e+03, 3.80000e+03}, | |
{2.80000e+03, 9.00000e+02}, | |
{2.80000e+03, 1.13000e+03}, | |
{2.90000e+03, 4.00000e+02}, | |
{2.90000e+03, 5.00000e+02}, | |
{2.90000e+03, 1.40000e+03}, | |
{2.90000e+03, 2.40000e+03}, | |
{2.90000e+03, 3.00000e+03}, | |
{3.00000e+03, 7.00000e+02}, | |
{3.00000e+03, 8.00000e+02}, | |
{3.00000e+03, 9.00000e+02}, | |
{3.00000e+03, 1.00000e+03}, | |
{3.00000e+03, 1.10000e+03}, | |
{3.00000e+03, 1.20000e+03}, | |
{3.00000e+03, 1.30000e+03}, | |
{3.00000e+03, 1.50000e+03}, | |
{3.00000e+03, 1.60000e+03}, | |
{3.00000e+03, 1.70000e+03}, | |
{3.00000e+03, 1.80000e+03}, | |
{3.00000e+03, 1.90000e+03}, | |
{3.00000e+03, 2.00000e+03}, | |
{3.00000e+03, 2.10000e+03}, | |
{3.00000e+03, 2.20000e+03}, | |
{3.00000e+03, 2.30000e+03}, | |
{3.00000e+03, 2.50000e+03}, | |
{3.00000e+03, 2.60000e+03}, | |
{3.00000e+03, 2.70000e+03}, | |
{3.00000e+03, 2.80000e+03}, | |
{3.00000e+03, 2.90000e+03}, | |
{3.00000e+03, 3.00000e+03}, | |
{3.00000e+03, 3.10000e+03}, | |
{3.00000e+03, 3.20000e+03}, | |
{3.00000e+03, 3.30000e+03}, | |
{3.00000e+03, 3.40000e+03}, | |
{3.00000e+03, 3.50000e+03}, | |
{3.00000e+03, 3.60000e+03}, | |
{3.00000e+03, 3.70000e+03}, | |
{3.00000e+03, 3.80000e+03}, | |
{1.50000e+02, 3.50000e+03}, | |
{1.50000e+02, 3.55000e+03}, | |
{4.69000e+02, 2.55000e+03}, | |
{4.69000e+02, 3.35000e+03}, | |
{4.69000e+02, 3.45000e+03}, | |
{5.40000e+02, 2.33000e+03}, | |
{5.40000e+02, 2.43000e+03}, | |
{6.20000e+02, 3.65000e+03}, | |
{6.20000e+02, 3.70900e+03}, | |
{7.50000e+02, 2.55000e+03}, | |
{8.50000e+02, 5.20000e+02}, | |
{8.50000e+02, 7.00000e+02}, | |
{8.50000e+02, 2.28000e+03}, | |
{9.39000e+02, 7.40000e+02}, | |
{9.50000e+02, 2.22000e+03}, | |
{9.10000e+02, 2.60000e+03}, | |
{1.05000e+03, 1.05000e+03}, | |
{1.15000e+03, 1.35000e+03}, | |
{1.17000e+03, 2.28000e+03}, | |
{1.22000e+03, 2.21000e+03}, | |
{1.35000e+03, 7.50000e+02}, | |
{1.35000e+03, 1.70000e+03}, | |
{1.35000e+03, 2.14000e+03}, | |
{1.45000e+03, 7.70000e+02}, | |
{1.55000e+03, 3.00000e+02}, | |
{1.55000e+03, 5.00000e+02}, | |
{1.55000e+03, 1.85000e+03}, | |
{1.65000e+03, 1.05000e+03}, | |
{1.69000e+03, 2.68000e+03}, | |
{1.71000e+03, 3.10000e+02}, | |
{1.71000e+03, 5.10000e+02}, | |
{1.75000e+03, 7.50000e+02}, | |
{1.79000e+03, 2.58000e+03}, | |
{1.72000e+03, 2.61000e+03}, | |
{1.79000e+03, 3.33000e+03}, | |
{1.72000e+03, 3.40900e+03}, | |
{1.82900e+03, 2.70000e+03}, | |
{1.82900e+03, 2.80000e+03}, | |
{1.82900e+03, 3.45000e+03}, | |
{2.06000e+03, 1.65000e+03}, | |
{2.05000e+03, 3.15000e+03}, | |
{2.17000e+03, 1.90000e+03}, | |
{2.11000e+03, 2.00000e+03}, | |
{2.12000e+03, 2.75000e+03}, | |
{2.15000e+03, 3.25000e+03}, | |
{2.29000e+03, 1.40000e+03}, | |
{2.22000e+03, 2.82000e+03}, | |
{2.28000e+03, 3.25000e+03}, | |
{2.39000e+03, 1.30000e+03}, | |
{2.32000e+03, 1.50000e+03}, | |
{2.45000e+03, 7.10000e+02}, | |
{2.62000e+03, 3.65000e+03}, | |
{2.75000e+03, 5.20000e+02}, | |
{2.76000e+03, 2.36000e+03}, | |
{2.85000e+03, 2.20000e+03}, | |
{2.85000e+03, 2.70000e+03}, | |
{2.85000e+03, 3.35000e+03}, | |
{2.93000e+03, 9.50000e+02}, | |
{2.95000e+03, 1.75000e+03}, | |
{2.95000e+03, 2.05000e+03}, | |
{5.20000e+02, 3.20000e+03}, | |
{2.30000e+03, 3.50000e+03}, | |
{2.32000e+03, 3.15000e+03}, | |
{5.30000e+02, 2.10000e+03}, | |
{2.55000e+03, 7.10000e+02}, | |
{7.50000e+02, 4.90000e+02}, | |
{0.00000e+00, 0.00000e+00} | |
}; | |
// http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/pcb442.opt.tour.gz | |
// (optimal tour, 1-based) | |
const int Opt[N]={ | |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 53, | |
52, 51, 83, 84, 85, 381, 382, 86, 54, 21, 22, 55, 87, 378, 88, 56, 23, 24, | |
25, 26, 27, 28, 29, 30, 31, 32, 376, 377, 33, 65, 64, 63, 62, 61, 60, 59, | |
58, 57, 89, 90, 91, 92, 93, 101, 111, 123, 133, 146, 158, 169, 182, 197, | |
196, 195, 194, 181, 168, 157, 145, 144, 391, 132, 122, 110, 121, 385, 109, | |
120, 388, 131, 143, 156, 167, 180, 193, 192, 204, 216, 225, 233, 408, 409, | |
412, 413, 404, 217, 205, 206, 207, 208, 218, 219, 209, 198, 183, 170, 159, | |
147, 134, 124, 112, 436, 94, 95, 379, 96, 380, 97, 98, 384, 383, 113, 125, | |
135, 148, 160, 171, 184, 199, 210, 220, 226, 411, 410, 414, 237, 265, 437, | |
275, 423, 438, 272, 420, 268, 416, 264, 236, 263, 262, 261, 422, 419, 260, | |
259, 258, 257, 256, 255, 254, 253, 418, 417, 252, 251, 250, 415, 249, 248, | |
247, 246, 245, 244, 243, 242, 241, 407, 228, 235, 240, 267, 271, 270, 274, | |
277, 426, 280, 440, 308, 309, 283, 284, 310, 339, 311, 285, 286, 312, 340, | |
313, 287, 288, 314, 315, 316, 290, 289, 424, 421, 425, 291, 317, 318, 292, | |
293, 319, 320, 294, 295, 321, 322, 296, 278, 297, 323, 430, 429, 324, 298, | |
299, 300, 325, 326, 301, 302, 327, 328, 303, 304, 329, 330, 305, 306, 331, | |
332, 333, 432, 334, 307, 335, 336, 427, 337, 338, 375, 374, 373, 372, 371, | |
370, 369, 368, 345, 367, 366, 365, 431, 364, 363, 362, 344, 361, 360, 359, | |
435, 358, 357, 356, 434, 355, 354, 353, 343, 352, 351, 350, 349, 433, 348, | |
347, 346, 342, 341, 428, 282, 281, 279, 276, 273, 269, 266, 239, 238, 234, | |
227, 405, 406, 401, 400, 185, 172, 161, 149, 136, 126, 114, 103, 102, 441, | |
104, 115, 386, 127, 387, 389, 116, 138, 392, 152, 151, 137, 150, 162, 173, | |
186, 174, 396, 399, 187, 175, 211, 403, 221, 229, 212, 230, 222, 213, 200, | |
188, 176, 163, 393, 153, 139, 140, 128, 117, 105, 106, 107, 118, 129, 141, | |
154, 165, 164, 397, 177, 189, 201, 202, 402, 214, 223, 231, 232, 224, 215, | |
203, 190, 191, 398, 178, 179, 395, 394, 166, 155, 142, 390, 130, 119, 108, | |
439, 82, 50, 49, 81, 100, 80, 48, 47, 79, 78, 46, 45, 77, 99, 76, 44, 43, | |
75, 74, 42, 41, 73, 72, 40, 39, 71, 70, 38, 37, 69, 68, 36, 35, 67, 66, 34, | |
442 | |
}; | |
}; // class pcb442 | |
void errlog(int i, int v, const std::string& trailer = "") { | |
if (i >= 0) std::cerr << i << ": "; | |
std::cerr << v << " " << trailer << "\r"; | |
if (i < 0) std::cerr << "\n"; | |
} | |
#ifdef ezxdisp | |
const int mar = 8; | |
const int wid = 3000; | |
const int hei = 3800; | |
const int Div = 5; | |
void mp(int x, int y, int s, std::pair<int, int>& a) { | |
a = std::pair<int, int>(mar+x/Div+s*(2*mar+wid/Div), mar+(hei-y)/Div); | |
} | |
void city(const std::pair<int, int>& c, ezx_t *e) { | |
ezx_fillrect_2d(e, c.first-2, c.second-2, c.first+2, c.second+2, &ezx_black); | |
} | |
void city2(const std::pair<int, int>& c, ezx_t *e) { | |
ezx_fillrect_2d(e, c.first-4, c.second-4, c.first+4, c.second+4, &ezx_orange); | |
} | |
void city2a(const std::pair<int, int>& c, ezx_t *e) { | |
ezx_fillrect_2d(e, c.first-6, c.second-6, c.first+6, c.second+6, &ezx_orange); | |
} | |
template <typename config, typename urn> | |
void ezx_tours(pcb442<config, urn>& P, config& T, config& R, urn& U, config& N, | |
int ret, int mut, ezx_t*& e) { | |
bool initial = (ret == std::numeric_limits<int>::min()); | |
ezx_wipe(e); | |
ezx_line_2d(e, wid/Div+2*mar, hei/Div+2*mar, wid/Div+2*mar, 0, &ezx_black, 1); | |
ezx_line_2d(e, 2*(wid/Div+2*mar), hei/Div+2*mar, 2*(wid/Div+2*mar), 0, | |
&ezx_black, 1); | |
ezx_str_2d(e, 5, 10, const_cast<char *>(reinterpret_cast<const char*> | |
(initial ? (mut == 0 ? "RR_all" : "minimum found") | |
: "previous")), &ezx_black); | |
std::stringstream s2; | |
s2 << P.cost(T); | |
ezx_str_2d(e, 50, hei/Div+mar, | |
const_cast<char *>(reinterpret_cast<const char*> | |
(s2.str().c_str())), &ezx_black); | |
if (ret != std::numeric_limits<int>::min()) { | |
s2 = std::stringstream(); | |
s2 << mut << ": "; | |
if (ret == std::numeric_limits<int>::max()) | |
s2 << "ran"; | |
else | |
s2 << (ret >= 0 ? "rad" : "seq"); | |
s2 << "(" << U.size() << ") "; | |
s2 << P.cost(R); | |
ezx_str_2d(e, 50+wid/Div+2*mar, hei/Div+mar, | |
const_cast<char*>(reinterpret_cast<const char *> | |
(s2.str().c_str())), &ezx_black); | |
s2 = std::stringstream(); | |
s2 << P.cost(N) << " (" << P.cost(N) - P.cost(T) << ")"; | |
ezx_str_2d(e, 50+2*(wid/Div+2*mar), hei/Div+mar, | |
const_cast<char*>(reinterpret_cast<const char *> | |
(s2.str().c_str())), &ezx_black); | |
ezx_str_2d(e, 5+wid/Div+2*mar, 10, | |
const_cast<char*>(reinterpret_cast<const char*>("ruined")), | |
&ezx_black); | |
ezx_str_2d(e, 5+2*(wid/Div+2*mar), 10, | |
const_cast<char*>(reinterpret_cast<const char*>("recreated")), | |
&ezx_black); | |
} else if (mut != 0) { | |
ezx_str_2d(e, 5+wid/Div+2*mar, 10, | |
const_cast<char*>(reinterpret_cast<const char*> | |
("global minimum")), &ezx_black); | |
s2 = std::stringstream(); | |
s2 << P.cost(R); | |
ezx_str_2d(e, 50+wid/Div+2*mar, hei/Div+mar, | |
const_cast<char*>(reinterpret_cast<const char *> | |
(s2.str().c_str())), &ezx_black); | |
} | |
if (ret != std::numeric_limits<int>::max() && ret >= 0) { | |
std::pair<int, int> c; | |
mp(P.C[ret][0], P.C[ret][1], 0, c); | |
int r = P.D[ret][P.rad_nxt[ret][U.size()-1]]; | |
ezx_circle_2d(e, c.first, c.second, r/Div, &ezx_orange, 2); | |
ezx_circle_2d(e, c.first+2*(wid/Div+2*mar), c.second, r/Div, | |
&ezx_orange, 2); | |
} | |
int prev = T.back(); | |
std::pair<int, int> p; | |
mp(P.C[prev][0], P.C[prev][1], 0, p); | |
std::for_each(T.begin(), T.end(), [&p, &e, &P](int i) { | |
std::pair<int, int> c; | |
mp(P.C[i][0], P.C[i][1], 0, c); | |
ezx_line_2d(e, p.first, p.second, c.first, c.second, &ezx_blue, 1); | |
p = c; | |
}); | |
int hig = (ret < 0) ? -(1 + ret) | |
: (ret != std::numeric_limits<int>::max()) ? ret : -1; | |
std::for_each(U.begin(), U.end(), [hig, &e, &P](int i) { | |
std::pair<int, int> c; | |
mp(P.C[i][0], P.C[i][1], 1, c); | |
if (i == hig) { city2a(c, e); } else { city2(c, e); } | |
}); | |
prev = R.back(); | |
mp(P.C[prev][0], P.C[prev][1], 1, p); | |
std::for_each(R.begin(), R.end(), [&p, &e, &P](int i) { | |
std::pair<int, int> c; | |
mp(P.C[i][0], P.C[i][1], 1, c); | |
ezx_line_2d(e, p.first, p.second, c.first, c.second, &ezx_blue, 1); | |
p = c; | |
}); | |
prev = N.back(); | |
mp(P.C[prev][0], P.C[prev][1], 2, p); | |
std::for_each(N.begin(), N.end(), [&p, &e, &P](int i) { | |
std::pair<int, int> c; | |
mp(P.C[i][0], P.C[i][1], 2, c); | |
ezx_line_2d(e, p.first, p.second, c.first, c.second, &ezx_blue, 1); | |
p = c; | |
}); | |
std::for_each(T.begin(), T.end(), [ret, &e, &P](int i) { | |
std::pair<int, int> c; | |
mp(P.C[i][0], P.C[i][1], 0, c); | |
city(c, e); | |
if (ret != std::numeric_limits<int>::min()) { | |
mp(P.C[i][0], P.C[i][1], 2, c); | |
city(c, e); | |
} | |
}); | |
std::for_each(R.begin(), R.end(), [&e, &P](int i) { | |
std::pair<int, int> c; | |
mp(P.C[i][0], P.C[i][1], 1, c); | |
city(c, e); | |
}); | |
// ezx_window_name(e, "57123 -> 53207 -> 51219"); | |
ezx_redraw(e); | |
usleep(10000); | |
} | |
#endif | |
template <typename config, typename urn> | |
void RR() { | |
std::pair<urn, urn> Us; | |
config T; | |
pcb442<config, urn> P(0.3, 1.0/3, 1.0/3, 1.0/3); | |
#ifdef ezxdisp | |
ezx_t *e = ezx_init(3*(wid/Div+2*mar), hei/Div+2*mar, | |
const_cast<char*>(reinterpret_cast<const char*> | |
("TSP greedy Ruin and Recreate"))); | |
#endif | |
P.RR_all(T, Us); | |
errlog(0, P.cost(T), "RR_all() [" + i2s(_sum) + "us]"); | |
_sum = 0; | |
#ifdef ezxdisp | |
config RC; | |
urn UC; | |
std::cerr << "\n"; | |
ezx_tours(P, T, RC, Us.first, RC, std::numeric_limits<int>::min(), 0, e); | |
(void) ezx_pushbutton(e, NULL, NULL); | |
#endif | |
for (int i = 1; i <= 100000; ++i) { | |
config R = T; | |
std::pair<urn, urn> UsR; | |
for (typename config::iterator it = R.begin(); it != R.end(); ++it) { | |
R[*it] = it; | |
UsR.second.push_back(*it); | |
} | |
#ifdef ezxdisp | |
int ret = P.ruin(R, UsR); | |
RC = R; | |
UC = UsR.first; | |
#else | |
(void) P.ruin(R, UsR); | |
#endif | |
auto oldsum = _sum; | |
P.recreate(R, UsR); | |
if (P.cost(R) < P.cost(T)) { | |
P.last += " (" + i2s(_sum - oldsum) + "us) "; | |
errlog(i, P.cost(R), P.last); | |
#ifdef ezxdisp | |
std::cerr << "\n"; | |
ezx_tours(P, T, RC, UC, R, ret, i, e); | |
while (1 != ezx_pushbutton(e, NULL, NULL)) { usleep(10000); } | |
#endif | |
T = R; | |
UsR.second.clear(); | |
for (typename config::iterator it = T.begin(); it != T.end(); ++it) { | |
T[*it] = it; | |
UsR.second.push_back(*it); | |
} | |
} | |
} | |
errlog(-1, P.cost(T), "local minimum found (after 100,000 greedy mutations)"); | |
errlog(-1, (_sum+500)/1000, "ms (only recreate)"); | |
// print(T); | |
/* | |
std::cout << "["; | |
bool first = true; | |
std::for_each(T.begin(), T.end(), [&first, P](int i) { | |
if (!first) std::cout << ","; else first = false; | |
std::cout << "[" << P.C[i][0] << "," << P.C[i][1] << "]"; | |
}); | |
std::cout << "]\n"; | |
*/ | |
config O; // P.Opt is 1-based | |
for (int i = 0; i < P.N; ++i) { int c = P.Opt[i] - 1; O.push_back(c); } | |
errlog(-1, P.cost(O), "global minimum"); | |
config S = T; | |
S.sort(); | |
urn V(S.begin(), S.end()); | |
for (int i = 0; i < P.N; ++i) assert(V[i] == i); | |
#ifdef ezxdisp | |
config dummy; | |
ezx_tours(P, T, O, Us.first, dummy, std::numeric_limits<int>::min(), -1, e); | |
while (3 != ezx_pushbutton(e, NULL, NULL)) { usleep(10000); } | |
#endif | |
} | |
int main(int argc, char *argv[]) { | |
srandom(argc > 1 ? atoi(argv[1]) : time(0)); | |
RR<random_access_list<int, 442>, std::vector<int>>(); | |
return 0; | |
} |
Revision 8:
On the path to parallelization of Recreate step. New class template <typename val, int N> class random_access_list
was needed so that a GPU CU or core can do computation wrt its id. The [] operator of config returns the iterator in internal list with *C[c] == c
.
Use of std::find()
as well as std::advance()
completely eliminated.
Part of the improvements was an unavoidable change in the way the random cities get created for radial ruin. Therefore same seed produces different result. With new code random seed of 205 even results in cost less than 51,000. Below will be used as something to compare against and detect unwanted changes in the future:
pi@raspberrypi5:~/tsp $ make
g++ -O3 -std=c++17 -Wall -Wextra -pedantic pcb442.cpp -o pcb442 -lstdc++ -lm
pi@raspberrypi5:~/tsp $ rm nohup.out
pi@raspberrypi5:~/tsp $ nohup time ./pcb442 205
nohup: ignoring input and appending output to 'nohup.out'
pi@raspberrypi5:~/tsp $ sed "s/^M/\n/g" nohup.out
0: 58473 RR_all() [474us]
3: 58347 ran(49) (97us)
4: 58282 seq(363,13) (25us)
8: 58094 ran(74) (127us)
9: 57833 ran(102) (171us)
13: 57568 ran(108) (184us)
16: 57308 ran(131) (209us)
21: 57113 ran(100) (167us)
22: 56541 ran(83) (144us)
28: 56521 seq(370,70) (131us)
30: 56321 rad(272,23) (41us)
33: 56210 ran(45) (94us)
34: 56074 ran(36) (72us)
53: 55990 ran(63) (110us)
54: 55899 rad(238,60) (100us)
62: 55893 rad(31,49) (82us)
65: 55874 ran(64) (114us)
67: 55861 seq(264,25) (44us)
68: 55757 ran(120) (197us)
75: 55718 ran(24) (44us)
76: 55591 ran(56) (99us)
79: 55568 ran(40) (74us)
80: 55565 ran(32) (58us)
83: 55529 ran(103) (171us)
85: 55479 seq(164,46) (78us)
99: 55408 ran(37) (68us)
107: 55320 ran(4) (8us)
111: 55261 seq(409,73) (682us)
112: 55179 ran(60) (737us)
113: 55167 ran(27) (259us)
126: 55150 ran(115) (491us)
134: 55072 ran(34) (61us)
140: 55069 ran(9) (20us)
144: 55036 seq(360,87) (152us)
147: 55013 ran(41) (73us)
165: 54914 ran(47) (89us)
200: 54894 ran(18) (34us)
203: 54753 rad(71,16) (28us)
213: 54720 ran(8) (13us)
231: 54675 ran(110) (182us)
263: 54668 rad(204,17) (27us)
265: 54583 ran(29) (50us)
279: 54581 ran(101) (165us)
281: 54511 seq(222,20) (35us)
291: 54330 ran(117) (195us)
299: 54306 ran(52) (93us)
316: 54241 ran(7) (14us)
333: 54184 ran(108) (176us)
384: 54149 rad(111,33) (59us)
400: 54141 ran(38) (70us)
528: 54045 seq(172,42) (74us)
587: 54023 ran(32) (59us)
642: 54014 ran(131) (208us)
683: 53902 ran(33) (62us)
704: 53871 ran(74) (131us)
727: 53868 ran(80) (138us)
733: 53862 ran(51) (91us)
769: 53838 rad(293,15) (23us)
789: 53797 ran(99) (165us)
790: 53758 seq(224,51) (83us)
791: 53717 ran(34) (63us)
838: 53688 ran(57) (99us)
869: 53671 ran(94) (157us)
883: 53646 ran(70) (124us)
902: 53598 ran(101) (172us)
969: 53573 ran(60) (103us)
980: 53572 ran(71) (127us)
984: 53559 rad(359,19) (33us)
997: 53477 rad(80,29) (46us)
1016: 53444 ran(9) (18us)
1110: 53432 rad(233,12) (22us)
1137: 53429 seq(399,4) (7us)
1169: 52966 rad(367,70) (113us)
1196: 52917 seq(257,11) (17us)
1229: 52904 ran(55) (100us)
1284: 52893 ran(120) (196us)
1309: 52842 ran(98) (167us)
1319: 52831 ran(33) (60us)
1373: 52811 ran(51) (90us)
1375: 52744 ran(63) (110us)
1437: 52662 ran(57) (99us)
1561: 52656 ran(54) (94us)
1712: 52638 ran(38) (70us)
2030: 52610 rad(368,42) (68us)
2054: 52580 ran(59) (103us)
2221: 52559 ran(27) (48us)
2319: 52556 ran(49) (91us)
3024: 52355 rad(27,120) (185us)
3041: 52348 ran(26) (47us)
3049: 52337 ran(54) (98us)
3062: 52285 ran(96) (160us)
3102: 52261 ran(66) (112us)
3114: 52239 ran(77) (130us)
3151: 52168 ran(29) (54us)
3191: 52142 rad(19,38) (62us)
3275: 52121 ran(74) (126us)
3325: 52099 ran(78) (133us)
6147: 52090 seq(391,8) (15us)
7652: 52085 rad(383,29) (50us)
7840: 52059 rad(416,9) (16us)
7875: 52056 ran(82) (139us)
10129: 52055 seq(110,19) (31us)
10239: 51987 ran(77) (130us)
10272: 51973 ran(95) (161us)
10445: 51964 rad(313,41) (69us)
10497: 51948 ran(21) (36us)
10558: 51890 ran(55) (98us)
11130: 51882 seq(341,57) (89us)
11271: 51829 ran(70) (121us)
11309: 51823 ran(25) (45us)
11653: 51801 ran(117) (186us)
11822: 51779 seq(276,10) (18us)
11845: 51744 ran(85) (143us)
11858: 51724 ran(49) (87us)
11991: 51721 ran(75) (126us)
12214: 51698 rad(20,30) (50us)
13224: 51685 rad(172,41) (71us)
13254: 51670 ran(56) (101us)
13288: 51541 ran(69) (116us)
13302: 51514 ran(24) (42us)
13615: 51502 ran(106) (176us)
13760: 51496 seq(125,12) (23us)
15054: 51419 seq(101,34) (60us)
15074: 51417 ran(75) (134us)
15147: 51399 ran(88) (150us)
15845: 51393 ran(43) (78us)
16216: 51384 seq(170,23) (37us)
16232: 51363 ran(79) (136us)
18350: 51315 rad(295,76) (117us)
18388: 51313 rad(299,30) (51us)
18563: 51268 rad(361,28) (48us)
27451: 51238 rad(360,15) (25us)
32949: 51232 seq(297,18) (31us)
36311: 51231 seq(360,28) (45us)
74444: 51181 rad(242,47) (79us)
74532: 51179 ran(40) (70us)
74581: 51174 ran(60) (103us)
74646: 51027 rad(286,30) (49us)
74695: 50969 ran(7) (13us)
80526: 50953 seq(420,27) (46us)
80558: 50947 ran(10) (19us)
96003: 50940 ran(105) (173us)
96948: 50933 seq(290,28) (48us)
50933 local minimum found (after 100,000 greedy mutations)
10832 ms (only recreate)
50778 global minimum
13.35user 0.00system 0:13.37elapsed 99%CPU (0avgtext+0avgdata 4672maxresident)k
0inputs+64outputs (1major+199minor)pagefaults 0swaps
pi@raspberrypi5:~/tsp $
TODO:
There is a lot of copying, current tour config T is copied into R, that gets ruined and recreated, and if improvement (greedy) T=R is copied again.
In little example code I have solution already, just need to integrate here.
Instead of erasing iterator from list, splice the single iterator at end of a helper list.
Before doing so, push_back the successor of it onto a vector.
These operations happen on T, no copy R.
In case cost did not improve after ruin and recreate step, the vector and auxiliary list allow for "T.restore()" operation, with runtime proportional to the items removed.
Much more to come, but not in this gist. Development of this gist is stopped, no further updates.
Code is split up, and a loader was added allowing for different problems.
In addition that repo has 111 TSP problems with 108 corresponding optimal tours.
New repo:
https://github.com/Hermann-SW/RR/tree/main?tab=readme-ov-file#ruin-and-recreate
I created a copy for usa13509 problem and
D[from] = new int[N];
This time for 13509 cities TSP problem the time between
_start
and_stop
is in range 1818..436904 microseconds on AMD 7950X CPU. The 437ms time ( AMD 7950X CPU runs single thread with 5.5GHz boost clock) happened for a recreate of 3,992 of the 13,509 cities (29.6%, RR is configured for ruins of sizes up to 30%) — time to parallelize the recreate step to 60 CUs or even 3,840 cores of a Vega20 type GPU ...Cost of 22,769,244 after initial
RR_all()
, global optimum is19,982,859
. Reduction of more than a million after only 283 mutations: