Last active
November 27, 2024 22:28
-
-
Save Hermann-SW/bef5b46a62a443a0d143f55118f0c9b8 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
\\ a b c d e | |
\\ l m n f o | |
\\ k p g u v | |
\\ j h x r y | |
\\ i q w t s | |
\\ps=[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 61, 71, 73, 79, 83, 101, 103, 107, 109, 113]; | |
ps=[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113]; | |
used=Vec(0,25); | |
{ | |
for(a=1,25,if(!used[a], | |
used[a]=1; | |
for(b=1,25,if(!used[b], | |
used[b]=1; | |
for(c=1,25,if(!used[c], | |
used[c]=1; | |
for(d=1,25,if(!used[d], | |
used[d]=1; | |
for(e=1,25,if(!used[e], | |
used[e]=1; | |
if(isprime(ps[a]+ps[b]+ps[c]+ps[d]+ps[e]), | |
for(f=1,25,if(!used[f], | |
used[f]=1; | |
for(g=1,25,if(!used[g], | |
used[g]=1; | |
for(h=1,25,if(!used[h], | |
used[h]=1; | |
for(i=1,25,if(!used[i], | |
used[i]=1; | |
if(isprime(ps[e]+ps[f]+ps[g]+ps[h]+ps[i]), | |
for(j=1,25,if(!used[j], | |
used[j]=1; | |
for(k=1,25,if(!used[k], | |
used[k]=1; | |
for(l=1,25,if(!used[l], | |
used[l]=1; | |
if(isprime(ps[i]+ps[j]+ps[k]+ps[l]+ps[a]), | |
for(m=1,25,if(!used[m], | |
used[m]=1; | |
for(n=1,25,if(!used[n], | |
used[n]=1; | |
for(o=1,25,if(!used[o], | |
used[o]=1; | |
if(isprime(ps[l]+ps[m]+ps[n]+ps[f]+ps[o]), | |
for(p=1,25,if(!used[p], | |
used[p]=1; | |
for(q=1,25,if(!used[q], | |
used[q]=1; | |
if(isprime(ps[b]+ps[m]+ps[p]+ps[h]+ps[q]), | |
for(r=1,25,if(!used[r], | |
used[r]=1; | |
for(s=1,25,if(!used[s], | |
used[s]=1; | |
if(isprime(ps[a]+ps[m]+ps[g]+ps[r]+ps[s]), | |
for(t=1,25,if(!used[t], | |
used[t]=1; | |
for(u=1,25,if(!used[u], | |
used[u]=1; | |
if(isprime(ps[t]+ps[r]+ps[u]+ps[f]+ps[d]), | |
for(v=1,25,if(!used[v], | |
used[v]=1; | |
if(isprime(ps[k]+ps[p]+ps[g]+ps[u]+ps[v]), | |
for(w=1,25,if(!used[w], | |
used[w]=1; | |
if(isprime(ps[i]+ps[q]+ps[w]+ps[t]+ps[s]), | |
for(x=1,25,if(!used[x], | |
used[x]=1; | |
if(isprime(ps[w]+ps[x]+ps[g]+ps[n]+ps[c]), | |
for(y=1,25,if(!used[y], | |
used[y]=1; | |
if(isprime(ps[j]+ps[h]+ps[x]+ps[r]+ps[y]), | |
if(isprime(ps[e]+ps[o]+ps[v]+ps[y]+ps[s]), | |
print("{[",ps[a],",",ps[b],",",ps[c],",",ps[d],",",ps[e],";"); | |
print(ps[l],",",ps[m],",",ps[n],",",ps[f],",",ps[o],";"); | |
print(ps[k],",",ps[p],",",ps[g],",",ps[u],",",ps[v],";"); | |
print(ps[j],",",ps[h],",",ps[x],",",ps[r],",",ps[y],";"); | |
print(ps[i],",",ps[q],",",ps[w],",",ps[t],",",ps[s],"];}"); | |
quit | |
); | |
); | |
used[y]=0; | |
)); | |
); | |
used[x]=0; | |
)); | |
); | |
used[w]=0; | |
)); | |
); | |
used[v]=0; | |
)); | |
); | |
used[u]=0; | |
)); | |
used[t]=0; | |
)); | |
); | |
used[s]=0; | |
)); | |
used[r]=0; | |
)); | |
); | |
used[q]=0; | |
)); | |
used[p]=0; | |
)); | |
); | |
used[o]=0; | |
)); | |
used[n]=0; | |
)); | |
used[m]=0; | |
)); | |
); | |
used[l]=0; | |
)); | |
used[k]=0; | |
)); | |
used[j]=0; | |
)); | |
); | |
used[i]=0; | |
)); | |
used[h]=0; | |
)); | |
used[g]=0; | |
)); | |
used[f]=0; | |
)); | |
); | |
used[e]=0; | |
)); | |
used[d]=0; | |
)); | |
used[c]=0; | |
)); | |
used[b]=0; | |
)); | |
used[a]=0; | |
)); | |
} |
These are the possible sets fo 25 distinct primes summing up to 1171:
pi@raspberrypi5:~/PrimeSquares $ gp -q < sum25e.gp
205 primes
1171
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 113]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 101, 109]
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 103, 107]
pi@raspberrypi5:~/PrimeSquares $
pi@raspberrypi5:~/PrimeSquares $ cat sum25e.gp
min25=vecsum(primes(26))-2;
mx=1279-1;
P=Vecrev(primes([3,mx]));
print(#P," primes");
srch(s,v,i,n)={
if(s<0,return);
if(n==0,if(s==0,print(Vecrev(v));return));
if(i>#P,return);
if(#P-i+1<n,return);
if(vecsum(P[#P-n+1..#P])>s,return);
srch(s-P[i],concat(v,[P[i]]),i+1,n-1);
srch(s,v,i+1,n);
};
print(1171);
srch(1171,[],1,25);
pi@raspberrypi5:~/PrimeSquares $
The 1st vector is used in above gist.
Minimal total sum that is a prime of 25 distinct primes is 1171.
Above gist computes a solution superfast:
pi@raspberrypi5:~/PrimeSquares $ time gp -q < sum25f.gp
{[3,5,7,11,17;
67,41,43,13,47;
37,53,19,59,113;
31,23,71,61,97;
29,89,83,79,73];}
real 0m0.031s
user 0m0.028s
sys 0m0.004s
pi@raspberrypi5:~/PrimeSquares $
Validation:
pi@raspberrypi5:~/PrimeSquares $ cat > 1171.gp
{[3,5,7,11,17;
67,41,43,13,47;
37,53,19,59,113;
31,23,71,61,97;
29,89,83,79,73];}
pi@raspberrypi5:~/PrimeSquares $ ps=1171.gp gp -q < validate.gp
1171.gp, sum: 1171, validated
pi@raspberrypi5:~/PrimeSquares $
pi@raspberrypi5:~/PrimeSquares $ cat validate.gp
assert(b)={if(!(b),error("assertion failed"));}
{
ps=eval(readvec(getenv("ps"))[1]);
print1(getenv("ps"),", ");
s=#ps;
assert(#ps~==s);
foreach(ps,c,assert(#c==s));
foreach(ps~,r,assert(#r==s));
foreach(ps,c,assert(isprime(vecsum(c))));
foreach(ps~,r,assert(isprime(vecsum(r))));
assert(isprime(trace(ps)));
assert(isprime(vecsum([ps[i,#ps+1-i]|i<-[1..#ps]])));
S=[r|i<-[1..s];r<-ps[i,]];
assert(#Set(S)==s^2);
foreach(S,e,assert(isprime(e)));
assert(isprime(vecsum(S)));
print("sum: ",vecsum(S),", validated");
}
pi@raspberrypi5:~/PrimeSquares $
pi@raspberrypi5:~/PrimeSquares $ gp -q < sum25d.gp
205 primes
1163: 0
1171: 3
1181: 2
1187: 2
1193: 5
1201: 19
1213: 38
1217: 27
1223: 39
1229: 65
1231: 102
1237: 140
1249: 263
1259: 306
1277: 695
sum=1706
pi@raspberrypi5:~/PrimeSquares $
pi@raspberrypi5:~/PrimeSquares $ cat sum25d.gp
min25=vecsum(primes(26))-2;
mx=1279-1;
P=Vecrev(primes([3,mx]));
print(#P," primes");
cnt=0;
srch(s,v,i,n)={
if(s<0,return);
if(n==0,if(s==0,cnt+=1;return));\\print(v);cnt+=1;return));
if(i>#P,return);
if(#P-i+1<n,return);
if(vecsum(P[#P-n+1..#P])>s,return);
srch(s-P[i],concat(v,[P[i]]),i+1,n-1);
srch(s,v,i+1,n);
};
{
C=primes([min25,mx]);
Sum=0;
foreach(C,c,print1(c,": ");cnt=0;srch(c,[],1,25);print(cnt);Sum+=cnt);
print("sum=",Sum);
}
pi@raspberrypi5:~/PrimeSquares $
pi@raspberrypi5:~/PrimeSquares $ gp -q < sum25c.gp
205 primes
[1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277]
M[205,1163]=[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23]
[1159, 1161, 1165, 1167, 1169, 1171, 1173, 1175, 1177, 1179, 1181, 1183, 1185, 1187, 1189, 1191, 1193, 1195, 1197, 1199, 1201, 1203, 1205, 1207, 1209, 1211, 1213, 1215, 1217, 1219, 1221, 1223, 1225, 1227, 1229, 1231, 1233, 1235, 1237, 1239, 1241, 1243, 1245, 1247, 1249, 1251, 1253, 1255, 1257, 1259, 1261, 1263, 1265, 1267, 1269, 1271, 1273, 1275, 1277]
pi@raspberrypi5:~/PrimeSquares $
pi@raspberrypi5:~/PrimeSquares $ cat sum25c.gp
{
min25=vecsum(primes(26))-2;
mx=1279-1;
P=primes([5,mx]);
print(#P+1," primes");
M=matrix(1+#P,mx,y,x,Set());
y=1;M[y,3]=Set([1]);
foreach(P,p,
y+=1;
M[y,p]=Set([1]);
for(x=1,mx,M[y,x]=setunion(M[y-1,x],M[y,x]));
for(x=1,mx-p,M[y,x+p]=setunion(Set([e+1|e<-M[y-1,x]]),M[y,x+p]));
);
C=[x|x<-primes([min25,mx]),setsearch(M[y,x],25)];
print(C);
print("M[205,1163]=",M[y,1163]);
print("\n",[x|x<-[1..mx],setsearch(M[y,x],25)]);
}
pi@raspberrypi5:~/PrimeSquares $
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Smallest total sum prime 5x5 square of distinct primes has sum 1171:
https://www.mersenneforum.org/node/1055343?p=1062055#post1062055