Created
December 14, 2015 01:32
-
-
Save Hikari9/38f9de8fb93e7028bb94 to your computer and use it in GitHub Desktop.
Count all possible triangles with distinct lengths <= n
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <iostream> | |
#include <cstdio> | |
using namespace std; | |
int sumsquare(int n) { | |
return n * (n + 1) / 2 * (2 * n + 1) / 3; | |
} | |
int range(int n) { | |
return n * (n + 1) / 2; | |
} | |
int main() { | |
int n; | |
while (cin >> n) { | |
int n2 = n / 2, n1 = n - n2 - 1; | |
int c = 0; | |
for (int i = 1; i <= n; ++i) { | |
for (int j = i + 1; j <= n; ++j) { | |
for (int k = j + 1; k <= n; ++k) { | |
if (i + j > k) | |
c++; | |
} | |
} | |
} | |
cout << c << endl; | |
c = 0; | |
for (int i = 1; i <= n / 2; ++i) { | |
// c += max(0, (i - 1) * (n - 2 * i - 1)); | |
int occ = min(i, n - i); | |
c += max(0, n - 2*i) * (i - 1); | |
c += occ * occ - occ * (occ + 1) / 2; | |
} | |
// cout << '\t' << c << endl; | |
for (int i = n / 2 + 1; i <= n; ++i) { | |
// c += max(0, (i - 1) * (n - 2 * i - 1)); | |
int occ = min(i, n - i); | |
c += max(0, n - 2*i) * (i - 1); | |
c += occ * occ - occ * (occ + 1) / 2; | |
} | |
cout << c << endl; | |
c = 0; | |
for (int i = 1; i <= n / 2; ++i) { | |
// c += (n - 2 * i) * (i - 1) + i * i - i * (i + 1) / 2; | |
// c += n * i - 2 * i * i + 2 * i - n + i * i - i * (i + 1) / 2; | |
c += (n + 2) * i - n - i * i - i * (i + 1) / 2; | |
} | |
// cout << '\t' << c << endl; | |
for (int i = n / 2 + 1; i <= n; ++i) | |
c += (n - i) * (n - i) - (n - i) * (n - i + 1) / 2; | |
cout << c << endl; | |
c = 0; | |
c += (n + 2) * range(n2) - n*n2 - sumsquare(n2) - (sumsquare(n2) + range(n2)) / 2; | |
// cout << '\t' << c << endl; | |
for (int i = n / 2 + 1; i <= n; ++i) | |
c += (n - i) * (n - i) - (n - i) * (n - i + 1) / 2; | |
cout << c << endl; | |
c = 0; | |
c += (n + 2) * range(n2) - n*n2 - sumsquare(n2) - (sumsquare(n2) + range(n2)) / 2; | |
c += sumsquare(n1) - (sumsquare(n1) + range(n1)) / 2; | |
cout << c << endl; | |
c = 0; | |
if (n & 1) { | |
int r = range(n / 2); | |
int s = sumsquare(n / 2); | |
c += (n + 2) * r - n * n1 - s - (s + r) / 2 + s - (s + r) / 2; | |
} else { | |
// n1 == n2 - 1 | |
int r = range(n / 2); | |
int s = sumsquare(n / 2); | |
c += (n + 2) * r - n * n2 - s - (s + r)/2; | |
c += s - n2 * n2 - (s - n2 * n2 + r - n2)/2; | |
// c += (n + 2) * range(n2) - n*n2 - sumsquare(n2) - (sumsquare(n2) + range(n2)) / 2; | |
// c += sumsquare(n1) - (sumsquare(n1) + range(n1)) / 2; | |
} | |
cout << c << endl; | |
/// FINAL FORMULA | |
int r = range(n / 2); | |
int s = sumsquare(n / 2); | |
c = (n + 1) * r - n / 2 * n - s; | |
if (n % 2 == 0) c -= range(n/2 - 1); | |
cout << c << endl; | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment