Created
November 18, 2021 06:24
-
-
Save Hiromi-nee/2abe72096ec9cda88d4f04a5749350ea to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from sklearn.metrics import confusion_matrix | |
import itertools | |
class_names = list(range(200)) | |
import matplotlib.pyplot as plt | |
def plot_confusion_matrix(cm, classes, | |
normalize=False, | |
title='Confusion matrix', | |
cmap=plt.cm.Blues): | |
""" | |
This function prints and plots the confusion matrix. | |
Normalization can be applied by setting `normalize=True`. | |
""" | |
if normalize: | |
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | |
print("Normalized confusion matrix") | |
else: | |
print('Confusion matrix, without normalization') | |
print(cm) | |
plt.imshow(cm, interpolation='nearest', cmap=cmap) | |
plt.title(title) | |
plt.colorbar() | |
tick_marks = np.arange(len(classes)) | |
plt.xticks(tick_marks, classes, rotation=45) | |
plt.yticks(tick_marks, classes) | |
fmt = '.2f' if normalize else 'd' | |
thresh = cm.max() / 2. | |
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): | |
plt.text(j, i, format(cm[i, j], fmt), | |
horizontalalignment="center", | |
color="white" if cm[i, j] > thresh else "black") | |
plt.ylabel('True label') | |
plt.xlabel('Predicted label') | |
plt.tight_layout() | |
# Compute confusion matrix | |
cnf_matrix = confusion_matrix(y_test.argmax(axis=1), y_pred.argmax(axis=1)) | |
np.set_printoptions(precision=2) | |
# Plot non-normalized confusion matrix | |
plt.figure() | |
plot_confusion_matrix(cnf_matrix, classes=class_names, | |
title='Confusion matrix, without normalization') | |
# Plot normalized confusion matrix | |
plt.figure() | |
plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, | |
title='Normalized confusion matrix') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment