-
-
Save HughParsonage/eb0fb9a1eb8acbb61a8ce1a38459eb1e to your computer and use it in GitHub Desktop.
Stata-style regression summaries
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
stata_summary <- | |
function( | |
x, | |
... | |
) { | |
# summarize | |
mod <- x | |
x <- summary(x) | |
# find outcome variable | |
outcome <- as.character(attr(terms(x), "variables")[[2L]]) | |
# summary statistics | |
## total sum of squares | |
sst <- sum((mod[["model"]][[outcome]] - mean(mod[["model"]][[outcome]], na.rm = TRUE))^2) | |
## sum of squared residuals | |
ssr <- sum(residuals(x)^2) | |
## model sum of squares | |
ssm <- sst - ssr | |
## number of observations | |
n_obs <- length(residuals(x)) | |
## number of RHS variables | |
n_var <- length(attr(terms(x), "term.labels")) | |
## f-statistic (f, df1, df2) | |
fstat <- x$fstatistic | |
## f-statistic p-value | |
fstat_p <- pf(x$fstatistic[1L], x$fstatistic[2L], x$fstatistic[3L], lower.tail = FALSE) | |
## r-squared | |
rsq <- x$r.squared | |
## adjusted r-squared | |
arsq <- x$adj.r.squared | |
## root mse | |
sigma <- x$sigma | |
# get coefficients | |
coefficients <- coef(x) | |
## extract constant, reshape and rename | |
const_row <- which(rownames(coefficients) == "(Intercept)") | |
coefficients <- rbind(coefficients[-const_row,], "_cons" = coefficients[const_row,]) | |
## get confidence intervals | |
coefficients <- cbind( | |
coefficients, | |
CI_lower = coefficients[,1L] - (qt(0.975, n_obs-n_var-1L) * coefficients[,2L]), | |
CI_upper = coefficients[,1L] + (qt(0.975, n_obs-n_var-1L) * coefficients[,2L]) | |
) | |
## colnames | |
colnames(coefficients) <- c("Coef.", "Std. Err.", "t", "P>|t|", "", "[95% Conf. Interval]") | |
## format columns | |
coef_character <- coefficients | |
storage.mode(coef_character) <- "character" | |
print_width <- function(vec, digits = 7, drop_zero = FALSE) { | |
max_digits <- max(nchar(as.character(round(vec, 0))), na.rm = TRUE) | |
neg <- (vec < 0) | |
lead_zero <- (abs(vec) < 1) | |
if (isTRUE(drop_zero)) { | |
vec <- sub("^0", "", ifelse(abs(vec) > 1, | |
sprintf(paste0("%0.", max(c(2L, digits-max_digits)), "f"), abs(vec)), | |
sprintf(paste0("%0.", digits, "f"), abs(vec)) | |
)) | |
vec <- paste0(ifelse(neg, "-", " "), vec) | |
#vec <- paste0(ifelse(lead_zero, " ", ""), vec) | |
} else { | |
vec <- ifelse(abs(vec) > 1, | |
sprintf(paste0("%0.", max(c(2L, digits-max_digits)), "f"), abs(vec)), | |
sprintf(paste0("%0.", digits, "f"), abs(vec)) | |
) | |
#vec <- formatC(abs(vec), digits = 7, width = 7) | |
vec <- paste0(ifelse(neg, " -", " "), vec) | |
} | |
vec | |
} | |
### coefficients (7 digits) | |
coef_character[,1L] <- print_width(coefficients[,1L], 7, drop_zero = TRUE) | |
### standard errors (7 digits) | |
coef_character[,2L] <- print_width(coefficients[,2L], 7, drop_zero = TRUE) | |
### t-statistics (2 digits) | |
coef_character[,3L] <- print_width(coefficients[,3L], 2) | |
### t-statistics (3 digits) | |
coef_character[,4L] <- print_width(coefficients[,4L], 3) | |
### CI bounds (7 digits) | |
coef_character[,5L] <- print_width(coefficients[,5L], 7, drop_zero = TRUE) | |
coef_character[,6L] <- print_width(coefficients[,6L], 7, drop_zero = TRUE) | |
rownames(coef_character) <- formatC(rownames(coef_character)) | |
# max variable name length | |
max_nchar <- max(c(nchar(rownames(coefficients)), na.rm = TRUE), nchar("Residual"), na.rm = TRUE) | |
nchar_n_obs <- max(c(nchar(as.character(n_obs)), 9L)) | |
## summary tables | |
fstat_padded <- formatC(paste0("F(", fstat[2L], ", ", fstat[3L], ")"), width = 15, flag = "-") | |
### ANOVA table | |
out_mat1 <- matrix(NA_character_, nrow = 6, ncol = 5) | |
out_mat1[1L,] <- c(" Source", " | ", " SS", " df", " MS ") | |
out_mat1[2L,] <- c("------------", "-+-", "---------", "------------", "------------") | |
out_mat1[5L,] <- c("------------", "-+-", "---------", "------------", "------------") | |
out_mat1[c(3,4,6),1L] <- c(" Model", " Residual", " Total") | |
out_mat1[c(3,4,6),2L] <- rep(" | ", 3) | |
out_mat1[c(3,4,6),3L] <- formatC(c(sprintf("%0.5f", ssm), sprintf("%0.5f", ssr), sprintf("%0.5f", sst)), width = 12) | |
out_mat1[c(3,4,6),4L] <- formatC(c(fstat[2L], fstat[3L], fstat[2L] + fstat[3L]), width = 9) | |
out_mat1[c(3,4,6),5L] <- formatC(c(ssm/fstat[2L], ssr/fstat[3L], sst/(fstat[2L] + fstat[3L])), width = 12, digits = 9) | |
### Summary statistics | |
out_mat2 <- matrix(NA_character_, nrow = 6, ncol = 3) | |
out_mat2[,1L] <- c("Number of obs ", fstat_padded, "Prob > F ", "R-squared ", "Adj R-squared ", "Root MSE ") | |
out_mat2[,2L] <- rep(" = ", 6) | |
out_mat2[,3L] <- formatC(c(n_obs, sprintf("%0.4f", c(fstat[1L], fstat_p, rsq, arsq, sigma))), width = nchar_n_obs) | |
out <- apply(cbind(out_mat1, rep(" ", 6), out_mat2), 1L, paste0, collapse = "") | |
for(i in seq_along(out)) { | |
cat(out[i], "\n") | |
} | |
rm(out) | |
cat( | |
" ______ ______ ______ ______ ____ | |
/ / / / / / | |
/_____ / _____/ / /____/ | |
/ / / / / / \\ | |
_____/ / /____/ / / \\ | |
" | |
) | |
cat("\n") | |
## coefficient table | |
cat(rep("-", (max_nchar + 69L)), "\n", sep = "") | |
cat(paste0(formatC(outcome, width = max_nchar), " | Coef. Std. Err. t P>|t| [95% Conf. Interval]"), "\n") | |
cat(rep("-", (max_nchar + 69L)), "\n", sep = "") | |
for (i in seq_len(nrow(coefficients))) { | |
cat(paste0(rownames(coef_character)[i], " | ", | |
coef_character[i,1L], " ", | |
coef_character[i,2L], " ", | |
coef_character[i,3L], " ", | |
coef_character[i,4L], " ", | |
coef_character[i,5L], " ", | |
coef_character[i,6L], " "), | |
"\n") | |
} | |
cat(rep("-", (max_nchar + 69L)), "\n", sep = "") | |
cat("\n") | |
# return invisibly | |
invisible(x) | |
} | |
# Examples | |
## sysuse auto | |
#webuse::webuse("auto") | |
## reg mpg weight length displacement | |
stata_summary(lm(mpg ~ weight + length + displacement, data = auto)) | |
## reg mpg c.weight##c.length displacement | |
stata_summary(lm(mpg ~ weight * length + displacement, data = auto)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment