Last active
August 29, 2015 14:25
-
-
Save ICBacon/5499f4795661a1b3b96e to your computer and use it in GitHub Desktop.
Original Version of My First Notebook
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
url = https://api.github.com/gists/0c37e47f24531557decd/1670b009f4baa036dab816779165cfaeff0004c0 | |
"content": "{\n \"cells\": [\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n \"# Definition of a Field F in Mathematics (Field Axioms):\\n\",\n \"\\n\",\n \"* ### Closure of F under addition and multiplication (i.e. + and · are binary operations on F)\\n\",\n \"\\n\",\n \" $\\\\forall$ a, b $\\\\epsilon$ F,\\n\",\n \" $$a + b\\\\; \\\\epsilon\\\\; F$$\\n\",\n \" $$a · b\\\\; \\\\epsilon\\\\; F$$\\n\",\n \"\\n\",\n \"* ### Commutativity of addition and multiplication\\n\",\n \"\\n\",\n \" $\\\\forall$ a, b $\\\\epsilon$ F, the following equalities hold:\\n\",\n \" $$b + a = a + b$$\\n\",\n \" $$b · a = a · b$$\\n\",\n \"\\n\",\n \"* ### Associativity of addition and multiplication\\n\",\n \" \\n\",\n \" $\\\\forall$ a, b, and c $\\\\epsilon$ F, the following equalities hold:\\n\",\n \" $$a + (b + c) = (a + b) + c$$\\n\",\n \" $$a · (b · c) = (a · b) · c$$\\n\",\n \"\\n\",\n \"* ### Distributivity of multiplication over addition\\n\",\n \"\\n\",\n \" $\\\\forall$ a, b, and c $\\\\epsilon$ F, the following equality holds:\\n\",\n \" \\n\",\n \" $$a · (b + c) = (a · b) + (a · c)$$\\n\",\n \"\\n\",\n \"* ### Existence of additive and multiplicative identity elements\\n\",\n \"\\n\",\n \" $\\\\forall$ a $\\\\epsilon$ F, $\\\\exists$ 0 $\\\\epsilon$ F, called the additive identity element, s.t.\\n\",\n \" \\n\",\n \" $$a + 0 = a$$\\n\",\n \" \\n\",\n \" Likewise, $\\\\exists$ 1 $\\\\epsilon$ F, called the multiplicative identity element, s.t. $\\\\forall$ a $\\\\epsilon$ F,\\n\",\n \" \\n\",\n \" $$a · 1 = a$$\\n\",\n \"\\n\",\n \"* ### Existence of additive inverses and multiplicative inverses\\n\",\n \"\\n\",\n \" $\\\\forall$ a $\\\\epsilon$ F, $\\\\exists$ (−a) $\\\\epsilon$ F, s.t.\\n\",\n \" \\n\",\n \" $$a + (−a) = 0$$\\n\",\n \" \\n\",\n \" Similarly, $\\\\forall$ a $\\\\epsilon$ F, with a $\\\\neq$ 0, $\\\\exists$ $a^{−1}$ $\\\\epsilon$ F, s.t.\\n\",\n \" \\n\",\n \" $$a · a^{−1} = 1$$\\n\",\n \" \\n\",\n \" (The elements a + (−b) and a · $b^{−1}$ are also denoted a − b and $\\\\dfrac{a}{b}$, respectively.) In other words, subtraction and division operations exist.\\n\",\n \"\\n\",\n \"* ### Nontrivial Field\\n\",\n \"\\n\",\n \" To exclude the trivial ring, let's require the additive identity and the multiplicative identity to be distinct:\\n\",\n \" \\n\",\n \" $$0 \\\\neq 1$$\\n\",\n \"\\n\",\n \"* ### Summary\\n\",\n \"\\n\",\n \" A *field* is therefore an algebraic structure〈F, +, ·, −, −1, 0, 1〉; of type〈2, 2, 1, 1, 0, 0〉, consisting of two abelian groups:\\n\",\n \" \\n\",\n \" * F under +, −, and 0\\n\",\n \" * F ∖ {0} under ·, −1, and 1, where 0 $\\\\neq$ 1, along with · distributing over +\"\n ]\n },\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n \"### Example: Show that the set of all real numbers $\\\\mathbb{R}$ is a field\"\n ]\n },\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n \"Recall the set $\\\\mathbb{R}$ = {...,-3,-2,-1,0,1,2,3,...}\\n\",\n \"\\n\",\n \"Suppose $\\\\exists$ a, b, and c $\\\\epsilon$ $\\\\mathbb{R}$. To show that $\\\\mathbb{R}$ is a field by using the definition above, let's show that all of the field axioms hold true.\\n\",\n \"\\n\",\n \"#### Axiom 1 (Closure). $\\\\forall$ $a, b$ $\\\\epsilon$ $\\\\mathbb{R}$,\\n\",\n \"$$a + b\\\\; \\\\epsilon\\\\; \\\\mathbb{R}$$\\n\",\n \"$$a · b\\\\; \\\\epsilon\\\\; \\\\mathbb{R}$$\\n\",\n \"\\n\",\n \"#### Axiom 2 (Commutativity). $\\\\forall$ $a, b$ $\\\\epsilon$ $\\\\mathbb{R}$,\\n\",\n \"$$b + a = a + b$$\\n\",\n \"$$b · a = a · b$$\\n\",\n \"\\n\",\n \"#### Axiom 3 (Associativity). $\\\\forall$ $a,b,c$ $\\\\epsilon$ $\\\\mathbb{R}$,\\n\",\n \"$$a + (b + c) = (a + b) + c$$\\n\",\n \"$$a · (b · c) = (a · b) · c$$\\n\",\n \"\\n\",\n \"#### Axiom 4 (Distributivity). $\\\\forall$ $a,b,c$ $\\\\epsilon$ $\\\\mathbb{R}$,\\n\",\n \"$$a · (b + c) = (a · b) + (a · c)$$\\n\",\n \"\\n\",\n \"#### Axiom 5 (Identities). $\\\\forall$ $b$ $\\\\epsilon$ $\\\\mathbb{R}$, $\\\\exists$ $0,1$ $\\\\epsilon$ $\\\\mathbb{R}$, $s.t.$\\n\",\n \"$$\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad b + 0 = 0 + b = b\\\\qquad\\\\qquad(Additive\\\\, Identity)$$\\n\",\n \"$$\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad b · 1 = 1 · b = b\\\\qquad\\\\quad\\\\;\\\\,(Multiplicative\\\\, Identity)$$\\n\",\n \"\\n\",\n \"#### Axiom 6 (Inverses). $\\\\forall$ $a$ $\\\\epsilon$ $\\\\mathbb{R}$, $\\\\exists$ $b,c$ $\\\\epsilon$ $\\\\mathbb{R}$, $and\\\\,\\\\, c\\\\neq0$ $s.t.$\\n\",\n \"$$\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad a + b = b + a = 0\\\\qquad\\\\qquad (Additive\\\\, Inverse)$$\\n\",\n \"$$\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad\\\\qquad a · c = c · a = 1\\\\qquad\\\\quad\\\\;\\\\,(Multiplicative\\\\, Inverse)$$\\n\",\n \"\\n\",\n \"#### Axiom 7 (Non-Trivial Field). $$0 \\\\neq 1$$\\n\",\n \"\\n\",\n \"####Axioms (1-7) imply that $\\\\mathbb{R}$ is a field.\"\n ]\n },\n {\n \"cell_type\": \"markdown\",\n \"metadata\": {},\n \"source\": [\n \"Let's take three real numbers a,b,c $\\\\epsilon$ $\\\\mathbb{R}$ to show this result. Suppose we take a,b,c to be:\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 25,\n \"metadata\": {\n \"collapsed\": true\n },\n \"outputs\": [],\n \"source\": [\n \"a = 2\\n\",\n \"b = -4\\n\",\n \"c = 5\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 26,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"2\"\n ]\n },\n \"execution_count\": 26,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 27,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"-4\"\n ]\n },\n \"execution_count\": 27,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"b\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 28,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"5\"\n ]\n },\n \"execution_count\": 28,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"c\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 29,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"-2\"\n ]\n },\n \"execution_count\": 29,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a + b\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 30,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"-8\"\n ]\n },\n \"execution_count\": 30,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a * b\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 31,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"3\"\n ]\n },\n \"execution_count\": 31,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a + (b + c)\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 32,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"3\"\n ]\n },\n \"execution_count\": 32,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"(a + b) + c\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 33,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"-40\"\n ]\n },\n \"execution_count\": 33,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a * (b * c)\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 34,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"-40\"\n ]\n },\n \"execution_count\": 34,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"(a * b) * c\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 35,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"-2\"\n ]\n },\n \"execution_count\": 35,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"b + a\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 36,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"-8\"\n ]\n },\n \"execution_count\": 36,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"b * a\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 37,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"2\"\n ]\n },\n \"execution_count\": 37,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a + 0\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 38,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"2\"\n ]\n },\n \"execution_count\": 38,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a * 1\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 39,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"0\"\n ]\n },\n \"execution_count\": 39,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a + (-a)\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 40,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"1.0\"\n ]\n },\n \"execution_count\": 40,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a * (a ** (-1))\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 41,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"2\"\n ]\n },\n \"execution_count\": 41,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"a * (b + c)\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": 42,\n \"metadata\": {\n \"collapsed\": false\n },\n \"outputs\": [\n {\n \"data\": {\n \"text/plain\": [\n \"2\"\n ]\n },\n \"execution_count\": 42,\n \"metadata\": {},\n \"output_type\": \"execute_result\"\n }\n ],\n \"source\": [\n \"(a * b) + (a * c)\"\n ]\n },\n {\n \"cell_type\": \"code\",\n \"execution_count\": null,\n \"metadata\": {\n \"collapsed\": true\n },\n \"outputs\": [],\n \"source\": []\n }\n ],\n \"metadata\": {\n \"kernelspec\": {\n \"display_name\": \"Python 2\",\n \"language\": \"python\",\n \"name\": \"python2\"\n },\n \"language_info\": {\n \"codemirror_mode\": {\n \"name\": \"ipython\",\n \"version\": 2\n },\n \"file_extension\": \".py\",\n \"mimetype\": \"text/x-python\",\n \"name\": \"python\",\n \"nbconvert_exporter\": \"python\",\n \"pygments_lexer\": \"ipython2\",\n \"version\": \"2.7.8\"\n }\n },\n \"nbformat\": 4,\n \"nbformat_minor\": 0\n}\n" |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment