Skip to content

Instantly share code, notes, and snippets.

@Icelandjack
Last active November 27, 2018 02:00
Show Gist options
  • Save Icelandjack/223763d397723efe0bc92e10b60c69fc to your computer and use it in GitHub Desktop.
Save Icelandjack/223763d397723efe0bc92e10b60c69fc to your computer and use it in GitHub Desktop.
System F
-- SYSTEM F
-- http://homepages.inf.ed.ac.uk/slindley/papers/embedding-f.pdf
--
-- Type-level lambdas
-- https://gist.github.com/AndrasKovacs/ac71371d0ca6e0995541e42cd3a3b0cf
{-# language TemplateHaskell, ScopedTypeVariables, RankNTypes,
TypeFamilies, UndecidableInstances, DeriveFunctor, GADTs,
TypeOperators, TypeApplications, AllowAmbiguousTypes,
TypeInType, StandaloneDeriving #-}
import Data.Singletons.TH -- singletons 2.4.1
import Data.Kind
-- some standard stuff for later examples' sake
--------------------------------------------------------------------------------
singletons([d| data Nat = Z | S Nat |])
data Vec n a where
Nil :: Vec Z a
(:>) :: a -> Vec n a -> Vec (S n) a
infixr 5 :>
deriving instance Functor (Vec n)
deriving instance Show a => Show (Vec n a)
-- Type-level lambdas
--------------------------------------------------------------------------------
data Var :: [Type] -> Type -> Type where
VZ :: Var (t ': ts) t
VS :: Var ts t -> Var (t' ': ts) t
data Term :: [Type] -> Type -> Type where
T :: t -> Term ts t
V :: Var ts t -> Term ts t -- Var
L :: Term (t ': ts) t' -> Term ts (t ~> t') -- Lam
(:$) :: Term ts (a ~> b) -> Term ts a -> Term ts b -- App
infixl 9 :$
data Env :: [Type] -> Type where
ENil :: Env '[]
ECons :: t -> Env cxt -> Env (t ': cxt)
type family LookupVar (v :: Var cxt t) (env :: Env cxt) :: t where
LookupVar VZ (ECons x env) = x
LookupVar (VS v) (ECons x env) = LookupVar v env
type family Eval (term :: Term '[] t) :: t where
Eval term = Eval_ term ENil
type family Eval_ (term :: Term cxt t) (env :: Env cxt) :: t where
Eval_ (T x) env = x
Eval_ (V v) env = LookupVar v env
Eval_ (f :$ x) env = Eval_ f env @@ Eval_ x env
Eval_ (L e) env = LamS e env
data LamS :: Term (a ': cxt) b -> Env cxt -> a ~> b
type instance Apply (LamS e env) x = Eval_ e (ECons x env)
-- shorthands for variables
type V0 = V VZ
type V1 = V (VS VZ)
type V2 = V (VS (VS VZ))
type V3 = V (VS (VS (VS VZ)))
type V4 = V (VS (VS (VS (VS VZ))))
-- term shorthand for (->)
type (:->) a b = (T (TyCon2 (->))) :$ a :$ b
infixr 0 :->
-- shorthands for type constructors
type T1 f a = T (TyCon1 f) :$ a
type T2 f a b = T (TyCon2 f) :$ a :$ b
type T3 f a b c = T (TyCon3 f) :$ a :$ b :$ c
type T4 f a b c d = T (TyCon4 f) :$ a :$ b :$ c :$ d
-- infix type family application, meant for L (type lambda)
-- like "L$ L$ L$ ..."
infixr 0 $
type ($) f x = f x
-- Induction for Nat
--------------------------------------------------------------------------------
natIndS ::
forall p n. p @@ Z -> (forall n. Sing n -> p @@ n -> p @@ S n) -> forall n. Sing n -> p @@ n
natIndS z s SZ = z
natIndS z s (SS sn) = s sn (natIndS @p z s sn)
natInd ::
forall p n. p @@ Z -> (forall n. p @@ n -> p @@ S n) -> forall n. Sing n -> p @@ n
natInd z s = natIndS @p z (\(sn :: Sing n') pn -> s @n' pn)
-- Examples using induction and type lambdas
--------------------------------------------------------------------------------
vReplicate :: forall a n. Sing n -> a -> Vec n a
vReplicate n a =
-- natInd (\n -> Vec n a) ...
natInd @(Eval (L$ T2 Vec V0 (T a))) Nil (a :>) n
vFmap :: forall a b n. SingI n => (a -> b) -> Vec n a -> Vec n b
vFmap f as =
-- natInd (\n -> Vec n a -> Vec n b) ...
natInd
@(Eval (L$ T2 Vec V0 (T a) :-> T2 Vec V0 (T b)))
(\_ -> Nil) (\hyp (a :> as) -> f a :> hyp as) (sing @_ @n) as
vZipWith :: forall a b c n. SingI n => (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
vZipWith f as bs =
-- natInd (\n -> Vec n a -> Vec n b -> Vec n c)
natInd
@(Eval (L$ T2 Vec V0 (T a) :-> T2 Vec V0 (T b) :-> T2 Vec V0 (T c)))
(\_ _ -> Nil)
(\hyp (a :> as) (b :> bs) -> f a b :> hyp as bs)
(sing @_ @n) as bs
type a --> b = Term '[] (a ~> b)
type exp · a = Eval exp @@ a
newtype Poly :: (Type --> Type) -> Type where
Poly :: (forall xx. lam · xx)
-> Poly lam
data Exp :: [Type] -> Type -> Type where
Var :: Var as a -> Exp as a
Lam :: Exp (a:as) b -> Exp as (a -> b)
App :: Exp as (a -> b) -> (Exp as a -> Exp as b)
TLam :: (forall xx. Exp as (lam · xx)) -> Exp as (Poly lam)
TApp :: Exp as (Poly lam) -> Exp as (lam · xx)
type AtoA = L (V0 :-> V0)
type Closed = Exp '[]
-- :: Closed (Poly (\a -> a -> a))
id_poly :: Closed (Poly AtoA)
id_poly = TLam (Lam (Var VZ))
id_int :: Closed (Int -> Int)
id_int = TApp id_poly
@Icelandjack
Copy link
Author

Icelandjack commented May 12, 2018

This is a direct combination of

Embedding F

and

AndrasKovacs's type-level lambdas

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment