Created
October 30, 2023 04:09
-
-
Save ImMamey/191fe4ab7ffd66ccbc2703e0305d2133 to your computer and use it in GitHub Desktop.
Draw neural network diagram with Matplotlib and python3+
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# A python 3^ version of a gist originally developed by @craffel, improved by @ljhuang2017 and @dvgodoy | |
import matplotlib.pyplot as plt | |
import numpy as np | |
def draw_neural_net(ax, left, right, bottom, top, layer_sizes, coefs_, intercepts_, n_iter_, loss_): | |
''' | |
Draw a neural network cartoon using matplotilb. | |
:usage: | |
>>> fig = plt.figure(figsize=(12, 12)) | |
>>> draw_neural_net(fig.gca(), .1, .9, .1, .9, [4, 7, 2]) | |
:parameters: | |
- ax : matplotlib.axes.AxesSubplot | |
The axes on which to plot the cartoon (get e.g. by plt.gca()) | |
- left : float | |
The center of the leftmost node(s) will be placed here | |
- right : float | |
The center of the rightmost node(s) will be placed here | |
- bottom : float | |
The center of the bottommost node(s) will be placed here | |
- top : float | |
The center of the topmost node(s) will be placed here | |
- layer_sizes : list of int | |
List of layer sizes, including input and output dimensionality | |
''' | |
n_layers = len(layer_sizes) | |
v_spacing = (top - bottom)/float(max(layer_sizes)) | |
h_spacing = (right - left)/float(len(layer_sizes) - 1) | |
# Input-Arrows | |
layer_top_0 = v_spacing*(layer_sizes[0] - 1)/2. + (top + bottom)/2. | |
for m in range(layer_sizes[0]): | |
plt.arrow(left-0.18, layer_top_0 - m*v_spacing, 0.12, 0, lw =1, head_width=0.01, head_length=0.02) | |
# Nodes | |
for n, layer_size in enumerate(layer_sizes): | |
layer_top = v_spacing*(layer_size - 1)/2. + (top + bottom)/2. | |
for m in range(layer_size): | |
circle = plt.Circle((n*h_spacing + left, layer_top - m*v_spacing), v_spacing/8., | |
color='w', ec='k', zorder=4) | |
if n == 0: | |
plt.text(left-0.125, layer_top - m*v_spacing, r'$X_{'+str(m+1)+'}$', fontsize=15) | |
elif (n_layers == 3) & (n == 1): | |
plt.text(n*h_spacing + left+0.00, layer_top - m*v_spacing+ (v_spacing/8.+0.01*v_spacing), r'$H_{'+str(m+1)+'}$', fontsize=15) | |
elif n == n_layers -1: | |
plt.text(n*h_spacing + left+0.10, layer_top - m*v_spacing, r'$y_{'+str(m+1)+'}$', fontsize=15) | |
ax.add_artist(circle) | |
# Bias-Nodes | |
for n, layer_size in enumerate(layer_sizes): | |
if n < n_layers -1: | |
x_bias = (n+0.5)*h_spacing + left | |
y_bias = top + 0.005 | |
circle = plt.Circle((x_bias, y_bias), v_spacing/8., color='w', ec='k', zorder=4) | |
plt.text(x_bias-(v_spacing/8.+0.10*v_spacing+0.01), y_bias, r'$1$', fontsize=15) | |
ax.add_artist(circle) | |
# Edges | |
# Edges between nodes | |
for n, (layer_size_a, layer_size_b) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): | |
layer_top_a = v_spacing*(layer_size_a - 1)/2. + (top + bottom)/2. | |
layer_top_b = v_spacing*(layer_size_b - 1)/2. + (top + bottom)/2. | |
for m in range(layer_size_a): | |
for o in range(layer_size_b): | |
line = plt.Line2D([n*h_spacing + left, (n + 1)*h_spacing + left], | |
[layer_top_a - m*v_spacing, layer_top_b - o*v_spacing], c='k') | |
ax.add_artist(line) | |
xm = (n*h_spacing + left) | |
xo = ((n + 1)*h_spacing + left) | |
ym = (layer_top_a - m*v_spacing) | |
yo = (layer_top_b - o*v_spacing) | |
rot_mo_rad = np.arctan((yo-ym)/(xo-xm)) | |
rot_mo_deg = rot_mo_rad*180./np.pi | |
xm1 = xm + (v_spacing/8.+0.05)*np.cos(rot_mo_rad) | |
if n == 0: | |
if yo > ym: | |
ym1 = ym + (v_spacing/8.+0.12)*np.sin(rot_mo_rad) | |
else: | |
ym1 = ym + (v_spacing/8.+0.05)*np.sin(rot_mo_rad) | |
else: | |
if yo > ym: | |
ym1 = ym + (v_spacing/8.+0.12)*np.sin(rot_mo_rad) | |
else: | |
ym1 = ym + (v_spacing/8.+0.04)*np.sin(rot_mo_rad) | |
plt.text( xm1, ym1,\ | |
str(round(coefs_[n][m, o],4)),\ | |
rotation = rot_mo_deg, \ | |
fontsize = 10) | |
# Edges between bias and nodes | |
for n, (layer_size_a, layer_size_b) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])): | |
if n < n_layers-1: | |
layer_top_a = v_spacing*(layer_size_a - 1)/2. + (top + bottom)/2. | |
layer_top_b = v_spacing*(layer_size_b - 1)/2. + (top + bottom)/2. | |
x_bias = (n+0.5)*h_spacing + left | |
y_bias = top + 0.005 | |
for o in range(layer_size_b): | |
line = plt.Line2D([x_bias, (n + 1)*h_spacing + left], | |
[y_bias, layer_top_b - o*v_spacing], c='k') | |
ax.add_artist(line) | |
xo = ((n + 1)*h_spacing + left) | |
yo = (layer_top_b - o*v_spacing) | |
rot_bo_rad = np.arctan((yo-y_bias)/(xo-x_bias)) | |
rot_bo_deg = rot_bo_rad*180./np.pi | |
xo2 = xo - (v_spacing/8.+0.01)*np.cos(rot_bo_rad) | |
yo2 = yo - (v_spacing/8.+0.01)*np.sin(rot_bo_rad) | |
xo1 = xo2 -0.05 *np.cos(rot_bo_rad) | |
yo1 = yo2 -0.05 *np.sin(rot_bo_rad) | |
plt.text( xo1, yo1,\ | |
str(round(intercepts_[n][o],4)),\ | |
rotation = rot_bo_deg, \ | |
fontsize = 10) | |
# Output-Arrows | |
layer_top_0 = v_spacing*(layer_sizes[-1] - 1)/2. + (top + bottom)/2. | |
for m in range(layer_sizes[-1]): | |
plt.arrow(right+0.015, layer_top_0 - m*v_spacing, 0.16*h_spacing, 0, lw =1, head_width=0.01, head_length=0.02) | |
# Record the n_iter_ and loss | |
plt.text(left + (right-left)/3., bottom - 0.005*v_spacing, \ | |
'Steps:'+str(n_iter_)+' Loss: ' + str(round(loss_, 6)), fontsize = 15) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.neural_network import MLPClassifier as MLP | |
#--------[1] Input data | |
dataset = np.array([[-1, -1, -1], [-1, 1, 1],[1, -1, 1], [1, 1, -1]]) | |
X_train = dataset | |
y_train = np.array([1,1,1,1]) | |
#-----2-2-1 | |
my_hidden_layer_sizes= (2,) | |
#------2-2-8-1 | |
#my_hidden_layer_sizes= (2, 8,) | |
#------2-16-16-1 | |
#my_hidden_layer_sizes= (16, 16,) | |
XOR_MLP = MLP( | |
activation='tanh', | |
alpha=0., | |
batch_size='auto', | |
beta_1=0.9, | |
beta_2=0.999, | |
early_stopping=False, | |
epsilon=1e-08, | |
hidden_layer_sizes= my_hidden_layer_sizes, | |
learning_rate='constant', | |
learning_rate_init = 0.1, | |
max_iter=5000, | |
momentum=0.5, | |
nesterovs_momentum=True, | |
power_t=0.5, | |
random_state=0, | |
shuffle=True, | |
solver='sgd', | |
tol=0.0001, | |
validation_fraction=0.1, | |
verbose=False, | |
warm_start=False) | |
XOR_MLP.fit(X_train,y_train) | |
fig = plt.figure(figsize=(12, 12)) | |
ax = fig.gca() | |
ax.axis('off') | |
layer_sizes = [2] + list(my_hidden_layer_sizes) + [1] | |
draw_neural_net(ax, .1, .9, .1, .9, layer_sizes, XOR_MLP.coefs_, XOR_MLP.intercepts_, XOR_MLP.n_iter_, XOR_MLP.loss_) | |
fig.savefig('nn_digaram.png') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment