Last active
September 20, 2018 15:00
-
-
Save ImadDabbura/04be8d7d93873de3e930c791508a57d1 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Define helper functions that will be used in L-model forward prop | |
| def linear_forward(A_prev, W, b): | |
| Z = np.dot(W, A_prev) + b | |
| cache = (A_prev, W, b) | |
| return Z, cache | |
| def linear_activation_forward(A_prev, W, b, activation_fn): | |
| assert activation_fn == "sigmoid" or activation_fn == "tanh" or \ | |
| activation_fn == "relu" | |
| if activation_fn == "sigmoid": | |
| Z, linear_cache = linear_forward(A_prev, W, b) | |
| A, activation_cache = sigmoid(Z) | |
| elif activation_fn == "tanh": | |
| Z, linear_cache = linear_forward(A_prev, W, b) | |
| A, activation_cache = tanh(Z) | |
| elif activation_fn == "relu": | |
| Z, linear_cache = linear_forward(A_prev, W, b) | |
| A, activation_cache = relu(Z) | |
| assert A.shape == (W.shape[0], A_prev.shape[1]) | |
| cache = (linear_cache, activation_cache) | |
| return A, cache | |
| def L_model_forward(X, parameters, hidden_layers_activation_fn="relu"): | |
| A = X | |
| caches = [] | |
| L = len(parameters) // 2 | |
| for l in range(1, L): | |
| A_prev = A | |
| A, cache = linear_activation_forward( | |
| A_prev, parameters["W" + str(l)], parameters["b" + str(l)], | |
| activation_fn=hidden_layers_activation_fn) | |
| caches.append(cache) | |
| AL, cache = linear_activation_forward( | |
| A, parameters["W" + str(L)], parameters["b" + str(L)], | |
| activation_fn="sigmoid") | |
| caches.append(cache) | |
| assert AL.shape == (1, X.shape[1]) | |
| return AL, caches |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment