Created
September 20, 2018 15:03
-
-
Save ImadDabbura/3db3111d046394f8c58e0529efff2ada to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def sigmoid_gradient(dA, Z): | |
| A, Z = sigmoid(Z) | |
| dZ = dA * A * (1 - A) | |
| return dZ | |
| def tanh_gradient(dA, Z): | |
| A, Z = tanh(Z) | |
| dZ = dA * (1 - np.square(A)) | |
| return dZ | |
| def relu_gradient(dA, Z): | |
| A, Z = relu(Z) | |
| dZ = np.multiply(dA, np.int64(A > 0)) | |
| return dZ | |
| # define helper functions that will be used in L-model back-prop | |
| def linear_backword(dZ, cache): | |
| A_prev, W, b = cache | |
| m = A_prev.shape[1] | |
| dW = (1 / m) * np.dot(dZ, A_prev.T) | |
| db = (1 / m) * np.sum(dZ, axis=1, keepdims=True) | |
| dA_prev = np.dot(W.T, dZ) | |
| assert dA_prev.shape == A_prev.shape | |
| assert dW.shape == W.shape | |
| assert db.shape == b.shape | |
| return dA_prev, dW, db | |
| def linear_activation_backward(dA, cache, activation_fn): | |
| linear_cache, activation_cache = cache | |
| if activation_fn == "sigmoid": | |
| dZ = sigmoid_gradient(dA, activation_cache) | |
| dA_prev, dW, db = linear_backword(dZ, linear_cache) | |
| elif activation_fn == "tanh": | |
| dZ = tanh_gradient(dA, activation_cache) | |
| dA_prev, dW, db = linear_backword(dZ, linear_cache) | |
| elif activation_fn == "relu": | |
| dZ = relu_gradient(dA, activation_cache) | |
| dA_prev, dW, db = linear_backword(dZ, linear_cache) | |
| return dA_prev, dW, db | |
| def L_model_backward(AL, y, caches, hidden_layers_activation_fn="relu"): | |
| y = y.reshape(AL.shape) | |
| L = len(caches) | |
| grads = {} | |
| dAL = np.divide(AL - y, np.multiply(AL, 1 - AL)) | |
| grads["dA" + str(L - 1)], grads["dW" + str(L)], grads[ | |
| "db" + str(L)] = linear_activation_backward( | |
| dAL, caches[L - 1], "sigmoid") | |
| for l in range(L - 1, 0, -1): | |
| current_cache = caches[l - 1] | |
| grads["dA" + str(l - 1)], grads["dW" + str(l)], grads[ | |
| "db" + str(l)] = linear_activation_backward( | |
| grads["dA" + str(l)], current_cache, | |
| hidden_layers_activation_fn) | |
| return grads |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
linear_backword -> linear_backw a rd