Last active
April 11, 2024 11:01
-
-
Save InnovArul/500e0c57e88300651f8005f9bd0d12bc to your computer and use it in GitHub Desktop.
tied linear layer experiment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch, torch.nn as nn, torch.nn.functional as F | |
import numpy as np | |
import torch.optim as optim | |
# tied autoencoder using off the shelf nn modules | |
class TiedAutoEncoderOffTheShelf(nn.Module): | |
def __init__(self, inp, out, weight): | |
super().__init__() | |
self.encoder = nn.Linear(inp, out, bias=False) | |
self.decoder = nn.Linear(out, inp, bias=False) | |
# tie the weights | |
#print(type(self.encoder.weight)) | |
self.encoder.weight = nn.Parameter(weight) | |
self.decoder.weight = nn.Parameter(weight.transpose(0,1)) | |
def forward(self, input): | |
encoded_feats = self.encoder(input) | |
reconstructed_output = self.decoder(encoded_feats) | |
return encoded_feats, reconstructed_output | |
# tied auto encoder using functional calls | |
class TiedAutoEncoderFunctional(nn.Module): | |
def __init__(self, inp, out): | |
super().__init__() | |
self.param = nn.Parameter(torch.randn(out, inp)) | |
def forward(self, input): | |
encoded_feats = F.linear(input, self.param) | |
reconstructed_output = F.linear(encoded_feats, self.param.t()) | |
return encoded_feats, reconstructed_output | |
# mixed approach | |
class MixedAppraochTiedAutoEncoder(nn.Module): | |
def __init__(self, inp, out, weight): | |
super().__init__() | |
self.encoder = nn.Linear(inp, out, bias=False) | |
self.encoder.weight = nn.Parameter(weight) | |
def forward(self, input): | |
encoded_feats = self.encoder(input) | |
reconstructed_output = F.linear(encoded_feats, self.encoder.weight.t()) | |
return encoded_feats, reconstructed_output | |
if __name__ == '__main__': | |
tied_module_F = TiedAutoEncoderFunctional(5, 6) | |
# instantiate off-the-shelf auto-encoder | |
offshelf_weight = tied_module_F.param.data.clone() | |
tied_module_offshelf = TiedAutoEncoderOffTheShelf(5, 6, offshelf_weight) | |
# instantiate mixed type auto-encoder | |
mixed_weight = tied_module_F.param.data.clone() | |
tied_module_mixed = MixedAppraochTiedAutoEncoder(5, 6, mixed_weight) | |
assert torch.equal(tied_module_offshelf.encoder.weight.data, tied_module_F.param.data), 'F vs offshelf: param not equal' | |
assert torch.equal(tied_module_mixed.encoder.weight.data, tied_module_F.param.data), 'F vs mixed: param not equal' | |
optim_F = optim.SGD(tied_module_F.parameters(), lr=1) | |
optim_offshelf = optim.SGD(tied_module_offshelf.parameters(), lr=1) | |
optim_mixed = optim.SGD(tied_module_mixed.parameters(), lr=1) | |
# common input | |
input = torch.rand(5, 5) | |
# zero the gradients | |
optim_F.zero_grad() | |
optim_offshelf.zero_grad() | |
optim_mixed.zero_grad() | |
# get output from both modules | |
reconstruction_F = tied_module_F(input) | |
reconstruction_offshelf = tied_module_offshelf(input) | |
reconstruction_mixed = tied_module_mixed(input) | |
# back propagation | |
reconstruction_F[1].sum().backward() | |
reconstruction_offshelf[1].sum().backward() | |
reconstruction_mixed[1].sum().backward() | |
# step | |
optim_F.step() | |
optim_offshelf.step() | |
optim_mixed.step() | |
# check the equality of output and parameters | |
assert torch.equal(reconstruction_offshelf[0], reconstruction_F[0]), 'F vs offshelf: bottleneck not equal' | |
assert torch.equal(reconstruction_offshelf[1], reconstruction_F[1]), 'F vs offshelf: output not equal' | |
assert (tied_module_offshelf.encoder.weight.data - tied_module_F.param.data).pow(2).sum() < 1e-10, 'F vs offshelf: param after step not equal' | |
assert (tied_module_offshelf.encoder.weight.data - offshelf_weight).pow(2).sum() < 1e-10, 'F vs mixed: source weight tensor not equal' | |
assert torch.equal(reconstruction_mixed[0], reconstruction_F[0]), 'F vs mixed: bottleneck not equal' | |
assert torch.equal(reconstruction_mixed[1], reconstruction_F[1]), 'F vs mixed: output not equal' | |
assert (tied_module_mixed.encoder.weight.data - tied_module_F.param.data).pow(2).sum() < 1e-10, 'F vs mixed: param after step not equal' | |
assert (tied_module_mixed.encoder.weight.data - mixed_weight).pow(2).sum() < 1e-10, 'F vs mixed: param after step not equal' | |
print('success!') |
Hi, Sorry that I missed your message. I hope you already found the answer.
Just to answer your question, yes, in my understanding, setting decoder.requires_grad_(False)
would not add the gradient from decoder to the weights. and it will let the weights to only receive gradients from encoder.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hello, @InnovArul Thank you for this nice work! I am currently building an Autoencoder for dimensionality reduction with beginner level of knowledge in PyTorch. Sorry if my question is very trivial, but is the same concept can be applied to a non-linear model? I was thinking of putting gradient=False in the decoder layer so that the model only train the weights for encoder only. Is this a correct approach?